ISI信道上受限容量估计算法的收敛速度

T. Duman, Junshan Zhang
{"title":"ISI信道上受限容量估计算法的收敛速度","authors":"T. Duman, Junshan Zhang","doi":"10.1109/ITA.2008.4601026","DOIUrl":null,"url":null,"abstract":"It has recently become popular to use simulation-based algorithms to empirically estimate achievable information rates over intersymbol interference (ISI) channels with inputs from specific input constellations. Such algorithms are guaranteed to converge by invoking the Shannon-McMillan-Brieman theorem provided that the output sequence is stationary and ergodic. In this note, we establish a central limit theorem result on the rate of convergence, and show that the variance of the estimates decreases like 1/N (where N is the sequence length employed) as N goes to infinity. This result indicates that it is possible to achieve estimation accuracy with any desired level by simply increasing the number of samples appropriately.","PeriodicalId":345196,"journal":{"name":"2008 Information Theory and Applications Workshop","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A note on convergence rate of constrained capacity estimation algorithms over ISI channels\",\"authors\":\"T. Duman, Junshan Zhang\",\"doi\":\"10.1109/ITA.2008.4601026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has recently become popular to use simulation-based algorithms to empirically estimate achievable information rates over intersymbol interference (ISI) channels with inputs from specific input constellations. Such algorithms are guaranteed to converge by invoking the Shannon-McMillan-Brieman theorem provided that the output sequence is stationary and ergodic. In this note, we establish a central limit theorem result on the rate of convergence, and show that the variance of the estimates decreases like 1/N (where N is the sequence length employed) as N goes to infinity. This result indicates that it is possible to achieve estimation accuracy with any desired level by simply increasing the number of samples appropriately.\",\"PeriodicalId\":345196,\"journal\":{\"name\":\"2008 Information Theory and Applications Workshop\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Information Theory and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2008.4601026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2008.4601026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最近,使用基于仿真的算法来经验性地估计具有特定输入星座输入的符号间干扰(ISI)信道上可实现的信息速率已成为流行。在输出序列平稳且遍历的条件下,利用Shannon-McMillan-Brieman定理保证了算法的收敛性。在这篇笔记中,我们建立了一个关于收敛速度的中心极限定理结果,并表明当N趋于无穷时,估计的方差以1/N(其中N是所使用的序列长度)的形式减小。该结果表明,只要适当地增加样本数量,就可以达到任何期望水平的估计精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A note on convergence rate of constrained capacity estimation algorithms over ISI channels
It has recently become popular to use simulation-based algorithms to empirically estimate achievable information rates over intersymbol interference (ISI) channels with inputs from specific input constellations. Such algorithms are guaranteed to converge by invoking the Shannon-McMillan-Brieman theorem provided that the output sequence is stationary and ergodic. In this note, we establish a central limit theorem result on the rate of convergence, and show that the variance of the estimates decreases like 1/N (where N is the sequence length employed) as N goes to infinity. This result indicates that it is possible to achieve estimation accuracy with any desired level by simply increasing the number of samples appropriately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信