空间样本选择模型的估计:部分极大似然方法

R. Rabovic, P. Čížek
{"title":"空间样本选择模型的估计:部分极大似然方法","authors":"R. Rabovic, P. Čížek","doi":"10.2139/ssrn.2756508","DOIUrl":null,"url":null,"abstract":"To analyze data obtained by non-random sampling in the presence of cross-sectional dependence, estimation of a sample selection model with a spatial lag of a latent dependent variable or a spatial error in both the selection and outcome equations is considered. Since there is no estimation framework for the spatial lag model and the existing estimators for the spatial error model are either computationally demanding or have poor small sample properties, we suggest to estimate these models by the partial maximum likelihood estimator, following Wang et al. (2013)'s framework for a spatial error probit model. We show that the estimator is consistent and asymptotically normally distributed. To facilitate easy and precise estimation of the variance matrix without requiring the spatial stationarity of errors, we propose the parametric bootstrap method. Monte Carlo simulations demonstrate the advantages of the estimators.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"36 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Estimation of Spatial Sample Selection Models: A Partial Maximum Likelihood Approach\",\"authors\":\"R. Rabovic, P. Čížek\",\"doi\":\"10.2139/ssrn.2756508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To analyze data obtained by non-random sampling in the presence of cross-sectional dependence, estimation of a sample selection model with a spatial lag of a latent dependent variable or a spatial error in both the selection and outcome equations is considered. Since there is no estimation framework for the spatial lag model and the existing estimators for the spatial error model are either computationally demanding or have poor small sample properties, we suggest to estimate these models by the partial maximum likelihood estimator, following Wang et al. (2013)'s framework for a spatial error probit model. We show that the estimator is consistent and asymptotically normally distributed. To facilitate easy and precise estimation of the variance matrix without requiring the spatial stationarity of errors, we propose the parametric bootstrap method. Monte Carlo simulations demonstrate the advantages of the estimators.\",\"PeriodicalId\":320844,\"journal\":{\"name\":\"PSN: Econometrics\",\"volume\":\"36 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2756508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2756508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了分析存在横截面相关性的非随机抽样获得的数据,考虑了具有潜在因变量的空间滞后或在选择和结果方程中都存在空间误差的样本选择模型的估计。由于空间滞后模型没有估计框架,现有的空间误差模型估计器要么计算量大,要么小样本性质差,我们建议按照Wang等人(2013)的空间误差概率模型框架,通过偏极大似然估计器来估计这些模型。我们证明了估计量是一致且渐近正态分布的。为了在不要求误差空间平稳性的情况下方便准确地估计方差矩阵,我们提出了参数自举法。蒙特卡洛仿真验证了该估计器的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Spatial Sample Selection Models: A Partial Maximum Likelihood Approach
To analyze data obtained by non-random sampling in the presence of cross-sectional dependence, estimation of a sample selection model with a spatial lag of a latent dependent variable or a spatial error in both the selection and outcome equations is considered. Since there is no estimation framework for the spatial lag model and the existing estimators for the spatial error model are either computationally demanding or have poor small sample properties, we suggest to estimate these models by the partial maximum likelihood estimator, following Wang et al. (2013)'s framework for a spatial error probit model. We show that the estimator is consistent and asymptotically normally distributed. To facilitate easy and precise estimation of the variance matrix without requiring the spatial stationarity of errors, we propose the parametric bootstrap method. Monte Carlo simulations demonstrate the advantages of the estimators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信