使用标签信息修改核可以提高SVM的分类性能

Martin Renqiang Min, A. Bonner, Zhaolei Zhang
{"title":"使用标签信息修改核可以提高SVM的分类性能","authors":"Martin Renqiang Min, A. Bonner, Zhaolei Zhang","doi":"10.1109/ICMLA.2007.84","DOIUrl":null,"url":null,"abstract":"Kernel learning methods based on kernel alignment with semidefinite programming (SDP) are often memory intensive and computationally expensive, thus often impractical for problems with large-size dataset. We propose a method using label information to modify kernels based on SVD and a linear mapping. As a result, the new kernel matrix reflects the label-dependent separability of the data in a better way than the original kernel matrix. In addition, our experimental results on USPS handwritten digits and the SCOP dataset, show that the SVM classifier based on the improved kernels has better performance than the SVM classifier based on the original kernels; moreover, SVM based on the improved profile kernel with pull-in homologs (see experiment section for explanations) produced the best results for remote homology detection on the SCOP dataset compared to the published results.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Modifying kernels using label information improves SVM classification performance\",\"authors\":\"Martin Renqiang Min, A. Bonner, Zhaolei Zhang\",\"doi\":\"10.1109/ICMLA.2007.84\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kernel learning methods based on kernel alignment with semidefinite programming (SDP) are often memory intensive and computationally expensive, thus often impractical for problems with large-size dataset. We propose a method using label information to modify kernels based on SVD and a linear mapping. As a result, the new kernel matrix reflects the label-dependent separability of the data in a better way than the original kernel matrix. In addition, our experimental results on USPS handwritten digits and the SCOP dataset, show that the SVM classifier based on the improved kernels has better performance than the SVM classifier based on the original kernels; moreover, SVM based on the improved profile kernel with pull-in homologs (see experiment section for explanations) produced the best results for remote homology detection on the SCOP dataset compared to the published results.\",\"PeriodicalId\":448863,\"journal\":{\"name\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2007.84\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

基于核对齐与半确定规划(SDP)的核学习方法通常占用大量内存和计算量,因此对于大数据集的问题通常不切实际。提出了一种基于奇异值分解和线性映射的标记信息修改核的方法。因此,新的核矩阵比原核矩阵更好地反映了数据的标签相关可分性。此外,我们对USPS手写数字和SCOP数据集的实验结果表明,基于改进核的SVM分类器比基于原始核的SVM分类器具有更好的性能;此外,与已发表的结果相比,基于带拉入同源物的改进轮廓核(参见实验部分的解释)的SVM在SCOP数据集上的远程同源性检测结果最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modifying kernels using label information improves SVM classification performance
Kernel learning methods based on kernel alignment with semidefinite programming (SDP) are often memory intensive and computationally expensive, thus often impractical for problems with large-size dataset. We propose a method using label information to modify kernels based on SVD and a linear mapping. As a result, the new kernel matrix reflects the label-dependent separability of the data in a better way than the original kernel matrix. In addition, our experimental results on USPS handwritten digits and the SCOP dataset, show that the SVM classifier based on the improved kernels has better performance than the SVM classifier based on the original kernels; moreover, SVM based on the improved profile kernel with pull-in homologs (see experiment section for explanations) produced the best results for remote homology detection on the SCOP dataset compared to the published results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信