概念波斯语文本摘要器:连续向量空间中的新模型

M. Khademi, M. Fakhredanesh, S. Hoseini
{"title":"概念波斯语文本摘要器:连续向量空间中的新模型","authors":"M. Khademi, M. Fakhredanesh, S. Hoseini","doi":"10.34028/IAJIT/17/4/11","DOIUrl":null,"url":null,"abstract":"Traditional methods of summarization are not cost-effective and possible today. Extractive summarization is a process that helps to extract the most important sentences from a text automatically, and generates a short informative summary. In this work, we propose a novel unsupervised method to summarize Persian texts. The proposed method adopt a hybrid approach that clusters the concepts of the text using deep learning and traditional statistical methods. First we produce a word embedding based on Hamshahri2 corpus and a dictionary of word frequencies. Then the proposed algorithm extracts the keywords of the document, clusters its concepts, and finally ranks the sentences to produce the summary. We evaluated the proposed method on Pasokh single-document corpus using the ROUGE evaluation measure. Without using any hand-crafted features, our proposed method achieves better results than the state-of-the-art related work results. We compared our unsupervised method with the best supervised Persian methods and we achieved an overall improvement of ROUGE-2 recall","PeriodicalId":161392,"journal":{"name":"The International Arab Journal of Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Conceptual Persian Text Summarizer: A New Model in Continuous Vector Space\",\"authors\":\"M. Khademi, M. Fakhredanesh, S. Hoseini\",\"doi\":\"10.34028/IAJIT/17/4/11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional methods of summarization are not cost-effective and possible today. Extractive summarization is a process that helps to extract the most important sentences from a text automatically, and generates a short informative summary. In this work, we propose a novel unsupervised method to summarize Persian texts. The proposed method adopt a hybrid approach that clusters the concepts of the text using deep learning and traditional statistical methods. First we produce a word embedding based on Hamshahri2 corpus and a dictionary of word frequencies. Then the proposed algorithm extracts the keywords of the document, clusters its concepts, and finally ranks the sentences to produce the summary. We evaluated the proposed method on Pasokh single-document corpus using the ROUGE evaluation measure. Without using any hand-crafted features, our proposed method achieves better results than the state-of-the-art related work results. We compared our unsupervised method with the best supervised Persian methods and we achieved an overall improvement of ROUGE-2 recall\",\"PeriodicalId\":161392,\"journal\":{\"name\":\"The International Arab Journal of Information Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Arab Journal of Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34028/IAJIT/17/4/11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Arab Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/IAJIT/17/4/11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

传统的总结方法在今天已经不具有成本效益和可行性。摘要提取是指自动从文本中提取出最重要的句子,并生成简短的信息摘要的过程。在这项工作中,我们提出了一种新的无监督方法来总结波斯语文本。该方法采用了一种混合的方法,使用深度学习和传统的统计方法对文本的概念进行聚类。首先,我们基于Hamshahri2语料库和词频字典生成一个词嵌入。然后,该算法提取文档的关键词,对其概念进行聚类,最后对句子进行排序生成摘要。我们使用ROUGE评价度量对Pasokh单文档语料库进行评价。在不使用任何手工特征的情况下,我们提出的方法取得了比目前最先进的相关工作结果更好的结果。我们将我们的无监督方法与最好的监督波斯方法进行了比较,我们实现了ROUGE-2召回率的全面提高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conceptual Persian Text Summarizer: A New Model in Continuous Vector Space
Traditional methods of summarization are not cost-effective and possible today. Extractive summarization is a process that helps to extract the most important sentences from a text automatically, and generates a short informative summary. In this work, we propose a novel unsupervised method to summarize Persian texts. The proposed method adopt a hybrid approach that clusters the concepts of the text using deep learning and traditional statistical methods. First we produce a word embedding based on Hamshahri2 corpus and a dictionary of word frequencies. Then the proposed algorithm extracts the keywords of the document, clusters its concepts, and finally ranks the sentences to produce the summary. We evaluated the proposed method on Pasokh single-document corpus using the ROUGE evaluation measure. Without using any hand-crafted features, our proposed method achieves better results than the state-of-the-art related work results. We compared our unsupervised method with the best supervised Persian methods and we achieved an overall improvement of ROUGE-2 recall
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信