在科学黑箱模型中发现意外的局部非线性相互作用

Michael Doron, Idan Segev, Dafna Shahaf
{"title":"在科学黑箱模型中发现意外的局部非线性相互作用","authors":"Michael Doron, Idan Segev, Dafna Shahaf","doi":"10.1145/3292500.3330886","DOIUrl":null,"url":null,"abstract":"Scientific computational models are crucial for analyzing and understanding complex real-life systems that are otherwise difficult for experimentation. However, the complex behavior and the vast input-output space of these models often make them opaque, slowing the discovery of novel phenomena. In this work, we present HINT (Hessian INTerestingness) -- a new algorithm that can automatically and systematically explore black-box models and highlight local nonlinear interactions in the input-output space of the model. This tool aims to facilitate the discovery of interesting model behaviors that are unknown to the researchers. Using this simple yet powerful tool, we were able to correctly rank all pairwise interactions in known benchmark models and do so faster and with greater accuracy than state-of-the-art methods. We further applied HINT to existing computational neuroscience models, and were able to reproduce important scientific discoveries that were published years after the creation of those models. Finally, we ran HINT on two real-world models (in neuroscience and earth science) and found new behaviors of the model that were of value to domain experts.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Discovering Unexpected Local Nonlinear Interactions in Scientific Black-box Models\",\"authors\":\"Michael Doron, Idan Segev, Dafna Shahaf\",\"doi\":\"10.1145/3292500.3330886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific computational models are crucial for analyzing and understanding complex real-life systems that are otherwise difficult for experimentation. However, the complex behavior and the vast input-output space of these models often make them opaque, slowing the discovery of novel phenomena. In this work, we present HINT (Hessian INTerestingness) -- a new algorithm that can automatically and systematically explore black-box models and highlight local nonlinear interactions in the input-output space of the model. This tool aims to facilitate the discovery of interesting model behaviors that are unknown to the researchers. Using this simple yet powerful tool, we were able to correctly rank all pairwise interactions in known benchmark models and do so faster and with greater accuracy than state-of-the-art methods. We further applied HINT to existing computational neuroscience models, and were able to reproduce important scientific discoveries that were published years after the creation of those models. Finally, we ran HINT on two real-world models (in neuroscience and earth science) and found new behaviors of the model that were of value to domain experts.\",\"PeriodicalId\":186134,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292500.3330886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

科学计算模型对于分析和理解复杂的现实生活系统至关重要,否则很难进行实验。然而,这些模型的复杂行为和巨大的输入输出空间往往使它们不透明,减缓了新现象的发现。在这项工作中,我们提出了HINT (Hessian INTerestingness)——一种可以自动系统地探索黑箱模型并突出模型输入输出空间中的局部非线性相互作用的新算法。该工具旨在促进研究人员未知的有趣模型行为的发现。使用这个简单而强大的工具,我们能够正确地对已知基准模型中的所有成对交互进行排序,并且比最先进的方法更快、更准确。我们进一步将HINT应用于现有的计算神经科学模型,并能够重现那些模型创建多年后发表的重要科学发现。最后,我们在两个现实世界的模型(神经科学和地球科学)上运行了HINT,并发现了对领域专家有价值的模型的新行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering Unexpected Local Nonlinear Interactions in Scientific Black-box Models
Scientific computational models are crucial for analyzing and understanding complex real-life systems that are otherwise difficult for experimentation. However, the complex behavior and the vast input-output space of these models often make them opaque, slowing the discovery of novel phenomena. In this work, we present HINT (Hessian INTerestingness) -- a new algorithm that can automatically and systematically explore black-box models and highlight local nonlinear interactions in the input-output space of the model. This tool aims to facilitate the discovery of interesting model behaviors that are unknown to the researchers. Using this simple yet powerful tool, we were able to correctly rank all pairwise interactions in known benchmark models and do so faster and with greater accuracy than state-of-the-art methods. We further applied HINT to existing computational neuroscience models, and were able to reproduce important scientific discoveries that were published years after the creation of those models. Finally, we ran HINT on two real-world models (in neuroscience and earth science) and found new behaviors of the model that were of value to domain experts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信