{"title":"在科学黑箱模型中发现意外的局部非线性相互作用","authors":"Michael Doron, Idan Segev, Dafna Shahaf","doi":"10.1145/3292500.3330886","DOIUrl":null,"url":null,"abstract":"Scientific computational models are crucial for analyzing and understanding complex real-life systems that are otherwise difficult for experimentation. However, the complex behavior and the vast input-output space of these models often make them opaque, slowing the discovery of novel phenomena. In this work, we present HINT (Hessian INTerestingness) -- a new algorithm that can automatically and systematically explore black-box models and highlight local nonlinear interactions in the input-output space of the model. This tool aims to facilitate the discovery of interesting model behaviors that are unknown to the researchers. Using this simple yet powerful tool, we were able to correctly rank all pairwise interactions in known benchmark models and do so faster and with greater accuracy than state-of-the-art methods. We further applied HINT to existing computational neuroscience models, and were able to reproduce important scientific discoveries that were published years after the creation of those models. Finally, we ran HINT on two real-world models (in neuroscience and earth science) and found new behaviors of the model that were of value to domain experts.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Discovering Unexpected Local Nonlinear Interactions in Scientific Black-box Models\",\"authors\":\"Michael Doron, Idan Segev, Dafna Shahaf\",\"doi\":\"10.1145/3292500.3330886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific computational models are crucial for analyzing and understanding complex real-life systems that are otherwise difficult for experimentation. However, the complex behavior and the vast input-output space of these models often make them opaque, slowing the discovery of novel phenomena. In this work, we present HINT (Hessian INTerestingness) -- a new algorithm that can automatically and systematically explore black-box models and highlight local nonlinear interactions in the input-output space of the model. This tool aims to facilitate the discovery of interesting model behaviors that are unknown to the researchers. Using this simple yet powerful tool, we were able to correctly rank all pairwise interactions in known benchmark models and do so faster and with greater accuracy than state-of-the-art methods. We further applied HINT to existing computational neuroscience models, and were able to reproduce important scientific discoveries that were published years after the creation of those models. Finally, we ran HINT on two real-world models (in neuroscience and earth science) and found new behaviors of the model that were of value to domain experts.\",\"PeriodicalId\":186134,\"journal\":{\"name\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3292500.3330886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discovering Unexpected Local Nonlinear Interactions in Scientific Black-box Models
Scientific computational models are crucial for analyzing and understanding complex real-life systems that are otherwise difficult for experimentation. However, the complex behavior and the vast input-output space of these models often make them opaque, slowing the discovery of novel phenomena. In this work, we present HINT (Hessian INTerestingness) -- a new algorithm that can automatically and systematically explore black-box models and highlight local nonlinear interactions in the input-output space of the model. This tool aims to facilitate the discovery of interesting model behaviors that are unknown to the researchers. Using this simple yet powerful tool, we were able to correctly rank all pairwise interactions in known benchmark models and do so faster and with greater accuracy than state-of-the-art methods. We further applied HINT to existing computational neuroscience models, and were able to reproduce important scientific discoveries that were published years after the creation of those models. Finally, we ran HINT on two real-world models (in neuroscience and earth science) and found new behaviors of the model that were of value to domain experts.