基于动态话题模型的天涯社舆情演变研究

Zhihua Yan, Xijin J. Tang
{"title":"基于动态话题模型的天涯社舆情演变研究","authors":"Zhihua Yan, Xijin J. Tang","doi":"10.21078/JSSI-2020-309-16","DOIUrl":null,"url":null,"abstract":"Abstract Online media have brought tremendous changes to civic life, public opinions, and government administration. Compared with traditional media, online media not only allow individuals to browse news and express their views more freely, but also accelerate the transmission of opinions and expand influence. As public opinions may arouse societal unrest, it is worth detecting the primary topics and uncovering the evolution trends of public opinions for societal administration. Various algorithms are developed to deal with the huge volume of unstructured online media data. In this study, dynamic topic model is employed to explore topic content evolution and prevalence evolution using the original posts published from 2013 to 2017 on the Tianya Zatan Board of Tianya Club, which is one of the most popular BBS in China. Based on semantic similarities, topics are grouped into three themes: Family life, societal affairs, and government administration. The evolution of topic prevalence and content are affected by emergent incidents. Topics on family life become popular, while themes “societal affairs” and “government administration” with bigger standard deviations are more likely to be influenced by emergent hot events. Content evolution represented by monthly pairwise distance matrix is very easy to find change points of topic content.","PeriodicalId":258223,"journal":{"name":"Journal of Systems Science and Information","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Exploring Evolution of Public Opinions on Tianya Club Using Dynamic Topic Models\",\"authors\":\"Zhihua Yan, Xijin J. Tang\",\"doi\":\"10.21078/JSSI-2020-309-16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Online media have brought tremendous changes to civic life, public opinions, and government administration. Compared with traditional media, online media not only allow individuals to browse news and express their views more freely, but also accelerate the transmission of opinions and expand influence. As public opinions may arouse societal unrest, it is worth detecting the primary topics and uncovering the evolution trends of public opinions for societal administration. Various algorithms are developed to deal with the huge volume of unstructured online media data. In this study, dynamic topic model is employed to explore topic content evolution and prevalence evolution using the original posts published from 2013 to 2017 on the Tianya Zatan Board of Tianya Club, which is one of the most popular BBS in China. Based on semantic similarities, topics are grouped into three themes: Family life, societal affairs, and government administration. The evolution of topic prevalence and content are affected by emergent incidents. Topics on family life become popular, while themes “societal affairs” and “government administration” with bigger standard deviations are more likely to be influenced by emergent hot events. Content evolution represented by monthly pairwise distance matrix is very easy to find change points of topic content.\",\"PeriodicalId\":258223,\"journal\":{\"name\":\"Journal of Systems Science and Information\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systems Science and Information\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21078/JSSI-2020-309-16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systems Science and Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21078/JSSI-2020-309-16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

网络媒体给公民生活、舆论和政府管理带来了巨大的变化。与传统媒体相比,网络媒体不仅可以让个人更自由地浏览新闻和表达观点,而且可以加速观点的传播,扩大影响力。由于民意可能引发社会动荡,因此发现民意的主要议题,揭示民意的演变趋势,对于社会管理是有价值的。为了处理大量的非结构化在线媒体数据,开发了各种算法。本研究采用动态话题模型,以中国最受欢迎的论坛之一天涯俱乐部天涯谈板2013 - 2017年发布的原创帖子为样本,探讨话题内容演变和流行度演变。根据语义相似性,主题分为三个主题:家庭生活、社会事务和政府管理。突发事件影响着话题流行度和内容的演变。家庭生活类话题更受欢迎,而标准差较大的“社会事务”和“政府管理”类话题更容易受到突发热点事件的影响。用月对距离矩阵表示的内容演化很容易找到话题内容的变化点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Evolution of Public Opinions on Tianya Club Using Dynamic Topic Models
Abstract Online media have brought tremendous changes to civic life, public opinions, and government administration. Compared with traditional media, online media not only allow individuals to browse news and express their views more freely, but also accelerate the transmission of opinions and expand influence. As public opinions may arouse societal unrest, it is worth detecting the primary topics and uncovering the evolution trends of public opinions for societal administration. Various algorithms are developed to deal with the huge volume of unstructured online media data. In this study, dynamic topic model is employed to explore topic content evolution and prevalence evolution using the original posts published from 2013 to 2017 on the Tianya Zatan Board of Tianya Club, which is one of the most popular BBS in China. Based on semantic similarities, topics are grouped into three themes: Family life, societal affairs, and government administration. The evolution of topic prevalence and content are affected by emergent incidents. Topics on family life become popular, while themes “societal affairs” and “government administration” with bigger standard deviations are more likely to be influenced by emergent hot events. Content evolution represented by monthly pairwise distance matrix is very easy to find change points of topic content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信