神经元-血管耦合的神经网络建模

J. Rajapakse, V. Venkatraman
{"title":"神经元-血管耦合的神经网络建模","authors":"J. Rajapakse, V. Venkatraman","doi":"10.1109/ICONIP.1999.844662","DOIUrl":null,"url":null,"abstract":"Sensory or cognitive stimuli in functional MRI (fMRI) experiments activate neuronal populations in specific areas of the brain. Neuronal events in activated brain regions cause changes of blood flow and blood oxygenation level. FMRI signals are sensitive to hemodynamic events ensuing neuronal activation in the brain. The authors use a neural network to model neuronal-vascular coupling of human brain with images obtained in fMRI experiments. The nonlinear mappings modeled by training a network were used to approximate time series acquired in language comprehension and visual experiments. The models of neuronal-vascular coupling realized using the neural network were better than those rendered by a linear system model.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network modeling of neuronal-vascular coupling\",\"authors\":\"J. Rajapakse, V. Venkatraman\",\"doi\":\"10.1109/ICONIP.1999.844662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensory or cognitive stimuli in functional MRI (fMRI) experiments activate neuronal populations in specific areas of the brain. Neuronal events in activated brain regions cause changes of blood flow and blood oxygenation level. FMRI signals are sensitive to hemodynamic events ensuing neuronal activation in the brain. The authors use a neural network to model neuronal-vascular coupling of human brain with images obtained in fMRI experiments. The nonlinear mappings modeled by training a network were used to approximate time series acquired in language comprehension and visual experiments. The models of neuronal-vascular coupling realized using the neural network were better than those rendered by a linear system model.\",\"PeriodicalId\":237855,\"journal\":{\"name\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.1999.844662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.844662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

功能磁共振成像(fMRI)实验中的感觉或认知刺激激活大脑特定区域的神经元群。激活脑区的神经元活动引起血流量和血氧水平的变化。FMRI信号对血流动力学事件敏感,随后大脑中神经元激活。作者利用fMRI实验获得的图像,利用神经网络模拟人脑神经元-血管耦合。利用训练网络建立的非线性映射模型来逼近语言理解和视觉实验中获得的时间序列。利用神经网络实现的神经-血管耦合模型优于线性系统模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network modeling of neuronal-vascular coupling
Sensory or cognitive stimuli in functional MRI (fMRI) experiments activate neuronal populations in specific areas of the brain. Neuronal events in activated brain regions cause changes of blood flow and blood oxygenation level. FMRI signals are sensitive to hemodynamic events ensuing neuronal activation in the brain. The authors use a neural network to model neuronal-vascular coupling of human brain with images obtained in fMRI experiments. The nonlinear mappings modeled by training a network were used to approximate time series acquired in language comprehension and visual experiments. The models of neuronal-vascular coupling realized using the neural network were better than those rendered by a linear system model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信