{"title":"神经元-血管耦合的神经网络建模","authors":"J. Rajapakse, V. Venkatraman","doi":"10.1109/ICONIP.1999.844662","DOIUrl":null,"url":null,"abstract":"Sensory or cognitive stimuli in functional MRI (fMRI) experiments activate neuronal populations in specific areas of the brain. Neuronal events in activated brain regions cause changes of blood flow and blood oxygenation level. FMRI signals are sensitive to hemodynamic events ensuing neuronal activation in the brain. The authors use a neural network to model neuronal-vascular coupling of human brain with images obtained in fMRI experiments. The nonlinear mappings modeled by training a network were used to approximate time series acquired in language comprehension and visual experiments. The models of neuronal-vascular coupling realized using the neural network were better than those rendered by a linear system model.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network modeling of neuronal-vascular coupling\",\"authors\":\"J. Rajapakse, V. Venkatraman\",\"doi\":\"10.1109/ICONIP.1999.844662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensory or cognitive stimuli in functional MRI (fMRI) experiments activate neuronal populations in specific areas of the brain. Neuronal events in activated brain regions cause changes of blood flow and blood oxygenation level. FMRI signals are sensitive to hemodynamic events ensuing neuronal activation in the brain. The authors use a neural network to model neuronal-vascular coupling of human brain with images obtained in fMRI experiments. The nonlinear mappings modeled by training a network were used to approximate time series acquired in language comprehension and visual experiments. The models of neuronal-vascular coupling realized using the neural network were better than those rendered by a linear system model.\",\"PeriodicalId\":237855,\"journal\":{\"name\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.1999.844662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.844662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neural network modeling of neuronal-vascular coupling
Sensory or cognitive stimuli in functional MRI (fMRI) experiments activate neuronal populations in specific areas of the brain. Neuronal events in activated brain regions cause changes of blood flow and blood oxygenation level. FMRI signals are sensitive to hemodynamic events ensuing neuronal activation in the brain. The authors use a neural network to model neuronal-vascular coupling of human brain with images obtained in fMRI experiments. The nonlinear mappings modeled by training a network were used to approximate time series acquired in language comprehension and visual experiments. The models of neuronal-vascular coupling realized using the neural network were better than those rendered by a linear system model.