基于数据驱动优化的无人驾驶飞行器轨迹跟踪控制

Yu Huang, Chao Wei, Yulong Sun
{"title":"基于数据驱动优化的无人驾驶飞行器轨迹跟踪控制","authors":"Yu Huang, Chao Wei, Yulong Sun","doi":"10.1109/ipec54454.2022.9777522","DOIUrl":null,"url":null,"abstract":"Since the traditional Model Predictive Control(MPC), which is widely used for trajectory tracking of autonomous vehicle, cannot analyze and determine specific parameters of the controller by mathematical methods. In this paper, a trajectory tracking control method based on model prediction is proposed to solve the problem of unmanned vehicle trajectory tracking, and the controller is optimized in a performance objective driven way. Specifically, the cost function of the model predictive controller is parameterized. And the global optimal performance in a specific scenario as the goal to build the global performance cost function. Then, the global performance cost is expressed as a Gaussian process, and new parameters of the next optimization are inferred by Bayesian optimization. The controller parameters of global performance optimization are found with a small learning cost through multiple iterations to improve tracking performance. To verify the effectiveness of this data-driven optimization algorithm, lane-changing experiments with Carsim and Matlab/Simulink are carried out. According to the test data, it is proved that the performance of trajectory tracking under this data-driven MPC algorithm is optimized.","PeriodicalId":232563,"journal":{"name":"2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Trajectory Tracking Control of Unmanned Vehicle Based on Data-driven Optimization\",\"authors\":\"Yu Huang, Chao Wei, Yulong Sun\",\"doi\":\"10.1109/ipec54454.2022.9777522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the traditional Model Predictive Control(MPC), which is widely used for trajectory tracking of autonomous vehicle, cannot analyze and determine specific parameters of the controller by mathematical methods. In this paper, a trajectory tracking control method based on model prediction is proposed to solve the problem of unmanned vehicle trajectory tracking, and the controller is optimized in a performance objective driven way. Specifically, the cost function of the model predictive controller is parameterized. And the global optimal performance in a specific scenario as the goal to build the global performance cost function. Then, the global performance cost is expressed as a Gaussian process, and new parameters of the next optimization are inferred by Bayesian optimization. The controller parameters of global performance optimization are found with a small learning cost through multiple iterations to improve tracking performance. To verify the effectiveness of this data-driven optimization algorithm, lane-changing experiments with Carsim and Matlab/Simulink are carried out. According to the test data, it is proved that the performance of trajectory tracking under this data-driven MPC algorithm is optimized.\",\"PeriodicalId\":232563,\"journal\":{\"name\":\"2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ipec54454.2022.9777522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ipec54454.2022.9777522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

传统的模型预测控制(MPC)被广泛应用于自动驾驶汽车的轨迹跟踪,但它不能通过数学方法分析和确定控制器的具体参数。针对无人驾驶飞行器的轨迹跟踪问题,提出了一种基于模型预测的轨迹跟踪控制方法,并以性能目标驱动的方式对控制器进行了优化。具体来说,对模型预测控制器的代价函数进行了参数化。并以全局最优性能为目标,在特定场景下构建全局性能代价函数。然后,将全局性能代价表示为高斯过程,并通过贝叶斯优化推断出下一次优化的新参数。通过多次迭代,以较小的学习代价找到全局性能优化的控制器参数,从而提高跟踪性能。为了验证该数据驱动优化算法的有效性,利用Carsim和Matlab/Simulink进行了变道实验。实验数据证明,在数据驱动的MPC算法下,轨迹跟踪性能得到了优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory Tracking Control of Unmanned Vehicle Based on Data-driven Optimization
Since the traditional Model Predictive Control(MPC), which is widely used for trajectory tracking of autonomous vehicle, cannot analyze and determine specific parameters of the controller by mathematical methods. In this paper, a trajectory tracking control method based on model prediction is proposed to solve the problem of unmanned vehicle trajectory tracking, and the controller is optimized in a performance objective driven way. Specifically, the cost function of the model predictive controller is parameterized. And the global optimal performance in a specific scenario as the goal to build the global performance cost function. Then, the global performance cost is expressed as a Gaussian process, and new parameters of the next optimization are inferred by Bayesian optimization. The controller parameters of global performance optimization are found with a small learning cost through multiple iterations to improve tracking performance. To verify the effectiveness of this data-driven optimization algorithm, lane-changing experiments with Carsim and Matlab/Simulink are carried out. According to the test data, it is proved that the performance of trajectory tracking under this data-driven MPC algorithm is optimized.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信