水雾灭火:数值模型

G. Hadjisophocleous, M. An, V. Costa, A. Sousa
{"title":"水雾灭火:数值模型","authors":"G. Hadjisophocleous, M. An, V. Costa, A. Sousa","doi":"10.1615/ICHMT.2000.THERSIEPROCVOL2THERSIEPROCVOL1.300","DOIUrl":null,"url":null,"abstract":"The modeling of fire suppression using fine watersprays is described within the context of an engineering computer model. A Lagrangian formulation was selected for the liquid droplet phase, while the gas phase uses an Eulerian formulation based on the RANS equations with a two-equation turbulence model. The fire is assumed to be a turbulent diffusion flame with its behavior dependent upon the supply of hydrocarbon fuel and the air accessing the fire. A feedback mechanism is also implemented, which dictates the rate of fuel evaporation. The flammability limits of the fuel vapor are taken into account, and the concentrations of fuel vapor, air, combustion products and steam evaporated from the droplets in the gas mixture are calculated by solving the equations for the mixture mass fractions. The droplets/gas phase interaction is described through source terms in the gas-phase equations. The time-dependent equations governing the gas phase are solved in primitive variable form by using a segregated technique. The ordinary differential equations for droplet motion, heating and evaporation are solved by an explicit forward time integration, which starts at the injection point. The droplet time step is determined by considering the turbulence dispersion of the droplets. The predictions produced by the model for the three different cases examined are physically realistic, notwithstanding the uncertainties associated with the experimental data and the input parameters.","PeriodicalId":237575,"journal":{"name":"Strojniški vestnik","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fire suppression using water mists: A numerical model\",\"authors\":\"G. Hadjisophocleous, M. An, V. Costa, A. Sousa\",\"doi\":\"10.1615/ICHMT.2000.THERSIEPROCVOL2THERSIEPROCVOL1.300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The modeling of fire suppression using fine watersprays is described within the context of an engineering computer model. A Lagrangian formulation was selected for the liquid droplet phase, while the gas phase uses an Eulerian formulation based on the RANS equations with a two-equation turbulence model. The fire is assumed to be a turbulent diffusion flame with its behavior dependent upon the supply of hydrocarbon fuel and the air accessing the fire. A feedback mechanism is also implemented, which dictates the rate of fuel evaporation. The flammability limits of the fuel vapor are taken into account, and the concentrations of fuel vapor, air, combustion products and steam evaporated from the droplets in the gas mixture are calculated by solving the equations for the mixture mass fractions. The droplets/gas phase interaction is described through source terms in the gas-phase equations. The time-dependent equations governing the gas phase are solved in primitive variable form by using a segregated technique. The ordinary differential equations for droplet motion, heating and evaporation are solved by an explicit forward time integration, which starts at the injection point. The droplet time step is determined by considering the turbulence dispersion of the droplets. The predictions produced by the model for the three different cases examined are physically realistic, notwithstanding the uncertainties associated with the experimental data and the input parameters.\",\"PeriodicalId\":237575,\"journal\":{\"name\":\"Strojniški vestnik\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strojniški vestnik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/ICHMT.2000.THERSIEPROCVOL2THERSIEPROCVOL1.300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniški vestnik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/ICHMT.2000.THERSIEPROCVOL2THERSIEPROCVOL1.300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在工程计算机模型的背景下,描述了细水雾灭火的建模。液滴相采用拉格朗日公式,气相采用基于RANS方程的欧拉公式,采用双方程湍流模型。假设火焰是湍流扩散火焰,其行为取决于碳氢燃料的供应和进入火焰的空气。一个反馈机制也被实施,它指示燃料蒸发的速率。考虑了燃料蒸气的可燃性极限,通过求解混合气质量分数方程,计算了混合气中燃料蒸气、空气、燃烧产物和液滴蒸发蒸汽的浓度。液滴/气相相互作用通过气相方程中的源项来描述。利用分离技术以原始变量形式求解了控制气相的时变方程。液滴运动、加热和蒸发的常微分方程采用从喷射点开始的显式正演时间积分求解。考虑液滴的湍流分散,确定液滴的时间步长。尽管存在与实验数据和输入参数相关的不确定性,但该模型对所研究的三种不同情况的预测在物理上是现实的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fire suppression using water mists: A numerical model
The modeling of fire suppression using fine watersprays is described within the context of an engineering computer model. A Lagrangian formulation was selected for the liquid droplet phase, while the gas phase uses an Eulerian formulation based on the RANS equations with a two-equation turbulence model. The fire is assumed to be a turbulent diffusion flame with its behavior dependent upon the supply of hydrocarbon fuel and the air accessing the fire. A feedback mechanism is also implemented, which dictates the rate of fuel evaporation. The flammability limits of the fuel vapor are taken into account, and the concentrations of fuel vapor, air, combustion products and steam evaporated from the droplets in the gas mixture are calculated by solving the equations for the mixture mass fractions. The droplets/gas phase interaction is described through source terms in the gas-phase equations. The time-dependent equations governing the gas phase are solved in primitive variable form by using a segregated technique. The ordinary differential equations for droplet motion, heating and evaporation are solved by an explicit forward time integration, which starts at the injection point. The droplet time step is determined by considering the turbulence dispersion of the droplets. The predictions produced by the model for the three different cases examined are physically realistic, notwithstanding the uncertainties associated with the experimental data and the input parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信