点对点球面铰接机械臂的最优控制建模与仿真

Prathamesh Saraf, R. N. Ponnalagu
{"title":"点对点球面铰接机械臂的最优控制建模与仿真","authors":"Prathamesh Saraf, R. N. Ponnalagu","doi":"10.1109/ICARA51699.2021.9376496","DOIUrl":null,"url":null,"abstract":"This paper aims to design an optimal stability controller for a point to point trajectory tracking 3 degree of freedom (DoF) articulated manipulator. The Denavit Hartenberg (DH) convention is used to obtain the forward and inverse kinematics of the manipulator. The manipulator dynamics are formulated using the Lagrange Euler (LE) method to obtain a nonlinear system. The complicated nonlinear equations obtained are then linearized in order to implement the optimal linear quadratic regulator (LQR). The simulations are performed in MATLAB and Simulink and the optimal controller's performance is tested for various conditions and the results are presented. The results obtained prove the superiority of LQR over conventional PID control.","PeriodicalId":183788,"journal":{"name":"2021 7th International Conference on Automation, Robotics and Applications (ICARA)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modeling and Simulation of a Point to Point Spherical Articulated Manipulator Using Optimal Control\",\"authors\":\"Prathamesh Saraf, R. N. Ponnalagu\",\"doi\":\"10.1109/ICARA51699.2021.9376496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to design an optimal stability controller for a point to point trajectory tracking 3 degree of freedom (DoF) articulated manipulator. The Denavit Hartenberg (DH) convention is used to obtain the forward and inverse kinematics of the manipulator. The manipulator dynamics are formulated using the Lagrange Euler (LE) method to obtain a nonlinear system. The complicated nonlinear equations obtained are then linearized in order to implement the optimal linear quadratic regulator (LQR). The simulations are performed in MATLAB and Simulink and the optimal controller's performance is tested for various conditions and the results are presented. The results obtained prove the superiority of LQR over conventional PID control.\",\"PeriodicalId\":183788,\"journal\":{\"name\":\"2021 7th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA51699.2021.9376496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA51699.2021.9376496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对点到点轨迹跟踪的三自由度铰接机械臂,设计了最优稳定性控制器。采用Denavit Hartenberg (DH)约定获得机械手的正运动学和逆运动学。采用拉格朗日欧拉(LE)方法对机械臂动力学进行了表述,得到了一个非线性系统。然后将得到的复杂非线性方程线性化,以实现最优线性二次型调节器(LQR)。在MATLAB和Simulink中进行了仿真,并在各种条件下对最优控制器的性能进行了测试,并给出了结果。结果证明了LQR控制相对于传统PID控制的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and Simulation of a Point to Point Spherical Articulated Manipulator Using Optimal Control
This paper aims to design an optimal stability controller for a point to point trajectory tracking 3 degree of freedom (DoF) articulated manipulator. The Denavit Hartenberg (DH) convention is used to obtain the forward and inverse kinematics of the manipulator. The manipulator dynamics are formulated using the Lagrange Euler (LE) method to obtain a nonlinear system. The complicated nonlinear equations obtained are then linearized in order to implement the optimal linear quadratic regulator (LQR). The simulations are performed in MATLAB and Simulink and the optimal controller's performance is tested for various conditions and the results are presented. The results obtained prove the superiority of LQR over conventional PID control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信