ALMA 2015:基于Hausdorff距离的水下目标定位技术的海上试验

P. E. Magalhães, X. Cristol, C. Ioana, D. Fattaccioli, J. Mars
{"title":"ALMA 2015:基于Hausdorff距离的水下目标定位技术的海上试验","authors":"P. E. Magalhães, X. Cristol, C. Ioana, D. Fattaccioli, J. Mars","doi":"10.1109/OCEANSKOBE.2018.8559444","DOIUrl":null,"url":null,"abstract":"The fundamental and practical problem of passive localization in range and depth, of an acoustic underwater source is addressed, with application to an at-sea experiment. We propose and try a new matching method based on a metric called as Hausdorff distance as a cost-function to be minimized, in order to perform the localization inversion. The data set analyzed here was collected during the DGA campaign ALMA 2015, which took place in a shallow water environment of the southern coast of France. Acoustic data were measured over a 10m-high vertical linear array (VLA), composed of 64 hydrophones. The 2-D localization, in range and depth, is performed by matching the patterns of time difference of arrival (TDOA), between respectively observed and modeled sequences. Several variants of the Hausdorff Distance are applied, firstly separately in each single hydrophone, and then combined in order to improve the localization accuracy, reducing the ambiguity either is depth and in range. The performance is evaluated in terms of the localization accuracy of the proposed method, in a context of passive localization with a cooperative system considering a motionless target. Very satisfactory performance and accuracy are obtained.","PeriodicalId":441405,"journal":{"name":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"ALMA 2015: Sea Trial of an Underwater Target Localization Technique Using Hausdorff Distance\",\"authors\":\"P. E. Magalhães, X. Cristol, C. Ioana, D. Fattaccioli, J. Mars\",\"doi\":\"10.1109/OCEANSKOBE.2018.8559444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fundamental and practical problem of passive localization in range and depth, of an acoustic underwater source is addressed, with application to an at-sea experiment. We propose and try a new matching method based on a metric called as Hausdorff distance as a cost-function to be minimized, in order to perform the localization inversion. The data set analyzed here was collected during the DGA campaign ALMA 2015, which took place in a shallow water environment of the southern coast of France. Acoustic data were measured over a 10m-high vertical linear array (VLA), composed of 64 hydrophones. The 2-D localization, in range and depth, is performed by matching the patterns of time difference of arrival (TDOA), between respectively observed and modeled sequences. Several variants of the Hausdorff Distance are applied, firstly separately in each single hydrophone, and then combined in order to improve the localization accuracy, reducing the ambiguity either is depth and in range. The performance is evaluated in terms of the localization accuracy of the proposed method, in a context of passive localization with a cooperative system considering a motionless target. Very satisfactory performance and accuracy are obtained.\",\"PeriodicalId\":441405,\"journal\":{\"name\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSKOBE.2018.8559444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSKOBE.2018.8559444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了水下声源被动定位的基本和实际问题,并将其应用于海上实验。我们提出并尝试了一种新的匹配方法,该方法基于称为Hausdorff距离的度量作为最小化的代价函数,以实现定位反演。这里分析的数据集是在DGA活动ALMA 2015期间收集的,该活动在法国南部海岸的浅水环境中进行。声学数据在一个10米高的垂直线性阵列(VLA)上测量,该阵列由64个水听器组成。通过匹配观测序列和模型序列之间的到达时间差(TDOA)模式,在范围和深度上进行二维定位。为了提高定位精度,减少深度和距离上的歧义,首先在单个水听器中分别应用了几种不同的豪斯多夫距离,然后将其组合起来。在考虑静止目标的合作系统被动定位的背景下,根据所提出方法的定位精度对性能进行了评估。获得了非常满意的性能和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ALMA 2015: Sea Trial of an Underwater Target Localization Technique Using Hausdorff Distance
The fundamental and practical problem of passive localization in range and depth, of an acoustic underwater source is addressed, with application to an at-sea experiment. We propose and try a new matching method based on a metric called as Hausdorff distance as a cost-function to be minimized, in order to perform the localization inversion. The data set analyzed here was collected during the DGA campaign ALMA 2015, which took place in a shallow water environment of the southern coast of France. Acoustic data were measured over a 10m-high vertical linear array (VLA), composed of 64 hydrophones. The 2-D localization, in range and depth, is performed by matching the patterns of time difference of arrival (TDOA), between respectively observed and modeled sequences. Several variants of the Hausdorff Distance are applied, firstly separately in each single hydrophone, and then combined in order to improve the localization accuracy, reducing the ambiguity either is depth and in range. The performance is evaluated in terms of the localization accuracy of the proposed method, in a context of passive localization with a cooperative system considering a motionless target. Very satisfactory performance and accuracy are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信