基于深度学习的桥梁图像综合维护检测方法

Xuefeng Zhao, Shengyuan Li, Hongguo Su, Lei Zhou, K. Loh
{"title":"基于深度学习的桥梁图像综合维护检测方法","authors":"Xuefeng Zhao, Shengyuan Li, Hongguo Su, Lei Zhou, K. Loh","doi":"10.1115/SMASIS2018-8268","DOIUrl":null,"url":null,"abstract":"Bridge management and maintenance work is an important part for the assessment the health state of bridge. The conventional management and maintenance work mainly relied on experienced engineering staffs by visual inspection and filling in survey forms. However, the human-based visual inspection is a difficult and time-consuming task and its detection results significantly rely on subjective judgement of human inspectors. To address the drawbacks of human-based visual inspection method, this paper proposes an image-based comprehensive maintenance and inspection method for bridges using deep learning. To classify the types of bridges, a convolutional neural network (CNN) classifier established by fine-turning the AlexNet is trained, validated and tested using 3832 images with three types of bridges (arch, suspension and cable-stayed bridge). For the recognition of bridge components (tower and deck of bridges), a Faster Region-based Convolutional Neural Network (Faster R-CNN) based on modified ZF-net is trained, validated and tested by utilizing 600 bridge images. To implement the strategy of a sliding window technique for the crack detection, another CNN from fine-turning the GoogLeNet is trained, validated and tested by employing a databank with cropping 1455 raw concrete images into 60000 intact and cracked images. The performance of the trained CNNs and Faster R-CNN is tested on some new images which are not used for training and validation processes. The test results substantiate the proposed method can indeed recognize the types and components and detect cracks for a bridges.","PeriodicalId":117187,"journal":{"name":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Image-Based Comprehensive Maintenance and Inspection Method for Bridges Using Deep Learning\",\"authors\":\"Xuefeng Zhao, Shengyuan Li, Hongguo Su, Lei Zhou, K. Loh\",\"doi\":\"10.1115/SMASIS2018-8268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bridge management and maintenance work is an important part for the assessment the health state of bridge. The conventional management and maintenance work mainly relied on experienced engineering staffs by visual inspection and filling in survey forms. However, the human-based visual inspection is a difficult and time-consuming task and its detection results significantly rely on subjective judgement of human inspectors. To address the drawbacks of human-based visual inspection method, this paper proposes an image-based comprehensive maintenance and inspection method for bridges using deep learning. To classify the types of bridges, a convolutional neural network (CNN) classifier established by fine-turning the AlexNet is trained, validated and tested using 3832 images with three types of bridges (arch, suspension and cable-stayed bridge). For the recognition of bridge components (tower and deck of bridges), a Faster Region-based Convolutional Neural Network (Faster R-CNN) based on modified ZF-net is trained, validated and tested by utilizing 600 bridge images. To implement the strategy of a sliding window technique for the crack detection, another CNN from fine-turning the GoogLeNet is trained, validated and tested by employing a databank with cropping 1455 raw concrete images into 60000 intact and cracked images. The performance of the trained CNNs and Faster R-CNN is tested on some new images which are not used for training and validation processes. The test results substantiate the proposed method can indeed recognize the types and components and detect cracks for a bridges.\",\"PeriodicalId\":117187,\"journal\":{\"name\":\"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/SMASIS2018-8268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Mechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/SMASIS2018-8268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

桥梁管理养护工作是桥梁健康状态评估的重要组成部分。传统的管理和维修工作主要依靠经验丰富的工程人员目测和填写调查表。然而,基于人的视觉检测是一项困难且耗时的任务,其检测结果严重依赖于人的主观判断。针对人工视觉检测方法的不足,提出了一种基于深度学习的基于图像的桥梁综合维护检测方法。为了对桥梁类型进行分类,对AlexNet进行微调建立的卷积神经网络(CNN)分类器进行了训练、验证和测试,使用3832张带有三种类型桥梁(拱桥、悬索桥和斜拉桥)的图像。为了识别桥梁构件(桥塔和桥面),基于改进的ZF-net对Faster区域卷积神经网络(Faster R-CNN)进行了训练,并利用600张桥梁图像进行了验证和测试。为了实现滑动窗口技术的裂缝检测策略,我们对GoogLeNet的另一个CNN进行了训练、验证和测试,并使用数据库将1455张原始混凝土图像裁剪成60000张完整和破碎的图像。在一些未用于训练和验证过程的新图像上测试训练后的cnn和Faster R-CNN的性能。试验结果表明,该方法能较好地识别桥梁的裂缝类型、成分和裂缝检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image-Based Comprehensive Maintenance and Inspection Method for Bridges Using Deep Learning
Bridge management and maintenance work is an important part for the assessment the health state of bridge. The conventional management and maintenance work mainly relied on experienced engineering staffs by visual inspection and filling in survey forms. However, the human-based visual inspection is a difficult and time-consuming task and its detection results significantly rely on subjective judgement of human inspectors. To address the drawbacks of human-based visual inspection method, this paper proposes an image-based comprehensive maintenance and inspection method for bridges using deep learning. To classify the types of bridges, a convolutional neural network (CNN) classifier established by fine-turning the AlexNet is trained, validated and tested using 3832 images with three types of bridges (arch, suspension and cable-stayed bridge). For the recognition of bridge components (tower and deck of bridges), a Faster Region-based Convolutional Neural Network (Faster R-CNN) based on modified ZF-net is trained, validated and tested by utilizing 600 bridge images. To implement the strategy of a sliding window technique for the crack detection, another CNN from fine-turning the GoogLeNet is trained, validated and tested by employing a databank with cropping 1455 raw concrete images into 60000 intact and cracked images. The performance of the trained CNNs and Faster R-CNN is tested on some new images which are not used for training and validation processes. The test results substantiate the proposed method can indeed recognize the types and components and detect cracks for a bridges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信