{"title":"MapReduce/Hadoop的耦合调度程序","authors":"Jian Tan, Xiaoqiao Meng, Li Zhang","doi":"10.1145/2287076.2287097","DOIUrl":null,"url":null,"abstract":"Current schedulers of MapReduce/Hadoop are quite successful in providing good performance. However improving spaces still exist: map and reduce tasks are not jointly optimized for scheduling, albeit there is a strong dependence between them. This can cause job starvation and bad data locality. We design a resource-aware scheduler for Hadoop, which couples the progresses of mappers and reducers, and jointly optimize the placements for both of them. This mitigates the starvation problem and improves the overall data locality. Our experiments demonstrate improvements to job response times by up to an order of magnitude.","PeriodicalId":330072,"journal":{"name":"IEEE International Symposium on High-Performance Parallel Distributed Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Coupling scheduler for MapReduce/Hadoop\",\"authors\":\"Jian Tan, Xiaoqiao Meng, Li Zhang\",\"doi\":\"10.1145/2287076.2287097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current schedulers of MapReduce/Hadoop are quite successful in providing good performance. However improving spaces still exist: map and reduce tasks are not jointly optimized for scheduling, albeit there is a strong dependence between them. This can cause job starvation and bad data locality. We design a resource-aware scheduler for Hadoop, which couples the progresses of mappers and reducers, and jointly optimize the placements for both of them. This mitigates the starvation problem and improves the overall data locality. Our experiments demonstrate improvements to job response times by up to an order of magnitude.\",\"PeriodicalId\":330072,\"journal\":{\"name\":\"IEEE International Symposium on High-Performance Parallel Distributed Computing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Symposium on High-Performance Parallel Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2287076.2287097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on High-Performance Parallel Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2287076.2287097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Current schedulers of MapReduce/Hadoop are quite successful in providing good performance. However improving spaces still exist: map and reduce tasks are not jointly optimized for scheduling, albeit there is a strong dependence between them. This can cause job starvation and bad data locality. We design a resource-aware scheduler for Hadoop, which couples the progresses of mappers and reducers, and jointly optimize the placements for both of them. This mitigates the starvation problem and improves the overall data locality. Our experiments demonstrate improvements to job response times by up to an order of magnitude.