论SAT的复杂性

R. Lipton, Anastasios Viglas
{"title":"论SAT的复杂性","authors":"R. Lipton, Anastasios Viglas","doi":"10.1109/SFFCS.1999.814618","DOIUrl":null,"url":null,"abstract":"We show that non-deterministic time NTIME(n) is not contained in deterministic time n/sup 2-/spl epsiv// and polylogarithmic space, for any /spl epsiv/>0. This implies that (infinitely often), satisfiability cannot be solved in time O(n/sup 2-/spl epsiv//) and polylogarithmic space. A similar result is presented for uniform circuits; a log-space uniform circuit of polylogarithmic width computing satisfiability requires infinitely often almost quadratic size.","PeriodicalId":385047,"journal":{"name":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"On the complexity of SAT\",\"authors\":\"R. Lipton, Anastasios Viglas\",\"doi\":\"10.1109/SFFCS.1999.814618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that non-deterministic time NTIME(n) is not contained in deterministic time n/sup 2-/spl epsiv// and polylogarithmic space, for any /spl epsiv/>0. This implies that (infinitely often), satisfiability cannot be solved in time O(n/sup 2-/spl epsiv//) and polylogarithmic space. A similar result is presented for uniform circuits; a log-space uniform circuit of polylogarithmic width computing satisfiability requires infinitely often almost quadratic size.\",\"PeriodicalId\":385047,\"journal\":{\"name\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFFCS.1999.814618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFFCS.1999.814618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

我们证明了非确定性时间NTIME(n)不包含在确定性时间n/sup 2-/spl epsiv//和多对数空间中,对于任何/spl epsiv/>0。这意味着(无限经常),可满足性不能在时间O(n/sup 2-/spl epsiv//)和多对数空间中求解。对于均匀电路也有类似的结果;一个具有多对数宽度计算满足性的对数空间均匀电路需要无限常接近二次的大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the complexity of SAT
We show that non-deterministic time NTIME(n) is not contained in deterministic time n/sup 2-/spl epsiv// and polylogarithmic space, for any /spl epsiv/>0. This implies that (infinitely often), satisfiability cannot be solved in time O(n/sup 2-/spl epsiv//) and polylogarithmic space. A similar result is presented for uniform circuits; a log-space uniform circuit of polylogarithmic width computing satisfiability requires infinitely often almost quadratic size.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信