多时滞非线性分数摄动ode指数稳定性的充分条件

M. Medved', Eva Brestovanská
{"title":"多时滞非线性分数摄动ode指数稳定性的充分条件","authors":"M. Medved', Eva Brestovanská","doi":"10.7153/fdc-2019-09-17","DOIUrl":null,"url":null,"abstract":"In this paper we prove some results on the exponential stability of the trivial solution of a system of fractional differential equations with multiple delays and tempered RiemannLouville fractional integrals on its right-hand side.","PeriodicalId":135809,"journal":{"name":"Fractional Differential Calculus","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sufficient conditions for the exponential stability of nonlinear fractionally perturbed ODEs with multiple time delays\",\"authors\":\"M. Medved', Eva Brestovanská\",\"doi\":\"10.7153/fdc-2019-09-17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we prove some results on the exponential stability of the trivial solution of a system of fractional differential equations with multiple delays and tempered RiemannLouville fractional integrals on its right-hand side.\",\"PeriodicalId\":135809,\"journal\":{\"name\":\"Fractional Differential Calculus\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Differential Calculus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7153/fdc-2019-09-17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Differential Calculus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/fdc-2019-09-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文证明了一类具有多重时滞的分数阶微分方程系统的平凡解的指数稳定性,该系统的右侧为回火riemanannlouville分数阶积分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sufficient conditions for the exponential stability of nonlinear fractionally perturbed ODEs with multiple time delays
In this paper we prove some results on the exponential stability of the trivial solution of a system of fractional differential equations with multiple delays and tempered RiemannLouville fractional integrals on its right-hand side.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信