使用最小弧线的多起点多目的地寻径:复杂性和模型

R. Barták, A. Dovier, Neng-Fa Zhou
{"title":"使用最小弧线的多起点多目的地寻径:复杂性和模型","authors":"R. Barták, A. Dovier, Neng-Fa Zhou","doi":"10.1109/ICTAI.2016.0024","DOIUrl":null,"url":null,"abstract":"The multiple-origin-multiple-destination (MOMD) problem is a simplified version of the logistics planning problem in which packages are required to be transported from their origins to their destinations by multiple trucks with a minimum total cost. This paper proves the NP-hardness of the problem and gives two constraint models for solving the problem optimally. These models are then solved by SAT and MIP solvers (after some translation) and the results are experimentally compared with ASP and CP problem encodings.","PeriodicalId":245697,"journal":{"name":"2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Multiple-Origin-Multiple-Destination Path Finding with Minimal Arc Usage: Complexity and Models\",\"authors\":\"R. Barták, A. Dovier, Neng-Fa Zhou\",\"doi\":\"10.1109/ICTAI.2016.0024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The multiple-origin-multiple-destination (MOMD) problem is a simplified version of the logistics planning problem in which packages are required to be transported from their origins to their destinations by multiple trucks with a minimum total cost. This paper proves the NP-hardness of the problem and gives two constraint models for solving the problem optimally. These models are then solved by SAT and MIP solvers (after some translation) and the results are experimentally compared with ASP and CP problem encodings.\",\"PeriodicalId\":245697,\"journal\":{\"name\":\"2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2016.0024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2016.0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

多出发地多目的地(MOMD)问题是物流规划问题的一个简化版本,其中包裹需要由多辆卡车以最小的总成本从出发地运输到目的地。本文证明了该问题的np -硬度,并给出了最优求解该问题的两个约束模型。然后用SAT和MIP求解器(经过一些翻译)求解这些模型,并将结果与ASP和CP问题编码进行实验比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple-Origin-Multiple-Destination Path Finding with Minimal Arc Usage: Complexity and Models
The multiple-origin-multiple-destination (MOMD) problem is a simplified version of the logistics planning problem in which packages are required to be transported from their origins to their destinations by multiple trucks with a minimum total cost. This paper proves the NP-hardness of the problem and gives two constraint models for solving the problem optimally. These models are then solved by SAT and MIP solvers (after some translation) and the results are experimentally compared with ASP and CP problem encodings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信