用于监控大型数据中心间网络的流量可视化框架

Meryem Elbaham, K. Nguyen, M. Cheriet
{"title":"用于监控大型数据中心间网络的流量可视化框架","authors":"Meryem Elbaham, K. Nguyen, M. Cheriet","doi":"10.1109/CNSM.2016.7818432","DOIUrl":null,"url":null,"abstract":"Diversity, dynamicity, and the huge volume of traffic in the network between datacenters has risen network administrators concerns on how to efficiently visualize their system in real-time. To deal with these challenges, we present in this paper a visualization framework based on advanced machine learning, traffic characterization, sampling, and graphical visualization algorithms, which aims to efficiently support inter-datacenter network monitoring. Experimental results show the framework is able to process real-time big flows and provides human-friendly interactive graphical representations.","PeriodicalId":334604,"journal":{"name":"2016 12th International Conference on Network and Service Management (CNSM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A traffic visualization framework for monitoring large-scale inter-datacenter network\",\"authors\":\"Meryem Elbaham, K. Nguyen, M. Cheriet\",\"doi\":\"10.1109/CNSM.2016.7818432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diversity, dynamicity, and the huge volume of traffic in the network between datacenters has risen network administrators concerns on how to efficiently visualize their system in real-time. To deal with these challenges, we present in this paper a visualization framework based on advanced machine learning, traffic characterization, sampling, and graphical visualization algorithms, which aims to efficiently support inter-datacenter network monitoring. Experimental results show the framework is able to process real-time big flows and provides human-friendly interactive graphical representations.\",\"PeriodicalId\":334604,\"journal\":{\"name\":\"2016 12th International Conference on Network and Service Management (CNSM)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 12th International Conference on Network and Service Management (CNSM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNSM.2016.7818432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNSM.2016.7818432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

数据中心之间网络的多样性、动态性和巨大的通信量引起了网络管理员对如何有效地实时可视化其系统的关注。为了应对这些挑战,我们在本文中提出了一个基于先进机器学习、流量表征、采样和图形可视化算法的可视化框架,旨在有效地支持数据中心间网络监控。实验结果表明,该框架能够处理实时大流量,并提供人性化的交互式图形表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A traffic visualization framework for monitoring large-scale inter-datacenter network
Diversity, dynamicity, and the huge volume of traffic in the network between datacenters has risen network administrators concerns on how to efficiently visualize their system in real-time. To deal with these challenges, we present in this paper a visualization framework based on advanced machine learning, traffic characterization, sampling, and graphical visualization algorithms, which aims to efficiently support inter-datacenter network monitoring. Experimental results show the framework is able to process real-time big flows and provides human-friendly interactive graphical representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信