{"title":"基于类关联规则的软件缺陷预测","authors":"Yuanxun Shao, B. Liu, Guoqi Li, Shihai Wang","doi":"10.1109/ICRSE.2017.8030774","DOIUrl":null,"url":null,"abstract":"Although there have lots of studies on using static code attributes to identify defective software modules, there still have many challenges. For instance, it is difficult to implement the Apriori-type algorithm to predict defects by learning from an imbalanced dataset. For more accurate and understandable defect prediction, a novel approach based on class-association rules algorithm is proposed. Class-association rules are looked as a separate class label, which is a specific type of association rules that explores the relationship between attributes and categories. In an empirical comparison with four datasets, the novel approach is superior to other four classification techniques and accordingly, proved it's valuable for defect prediction.","PeriodicalId":317626,"journal":{"name":"2017 Second International Conference on Reliability Systems Engineering (ICRSE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Software defect prediction based on class-association rules\",\"authors\":\"Yuanxun Shao, B. Liu, Guoqi Li, Shihai Wang\",\"doi\":\"10.1109/ICRSE.2017.8030774\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although there have lots of studies on using static code attributes to identify defective software modules, there still have many challenges. For instance, it is difficult to implement the Apriori-type algorithm to predict defects by learning from an imbalanced dataset. For more accurate and understandable defect prediction, a novel approach based on class-association rules algorithm is proposed. Class-association rules are looked as a separate class label, which is a specific type of association rules that explores the relationship between attributes and categories. In an empirical comparison with four datasets, the novel approach is superior to other four classification techniques and accordingly, proved it's valuable for defect prediction.\",\"PeriodicalId\":317626,\"journal\":{\"name\":\"2017 Second International Conference on Reliability Systems Engineering (ICRSE)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Second International Conference on Reliability Systems Engineering (ICRSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRSE.2017.8030774\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Second International Conference on Reliability Systems Engineering (ICRSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRSE.2017.8030774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Software defect prediction based on class-association rules
Although there have lots of studies on using static code attributes to identify defective software modules, there still have many challenges. For instance, it is difficult to implement the Apriori-type algorithm to predict defects by learning from an imbalanced dataset. For more accurate and understandable defect prediction, a novel approach based on class-association rules algorithm is proposed. Class-association rules are looked as a separate class label, which is a specific type of association rules that explores the relationship between attributes and categories. In an empirical comparison with four datasets, the novel approach is superior to other four classification techniques and accordingly, proved it's valuable for defect prediction.