基于SVDD的地暖用户预测

Xingguang Yang, Huiqun Yu, Jianmei Guo, Guisheng Fan, Kai Shi
{"title":"基于SVDD的地暖用户预测","authors":"Xingguang Yang, Huiqun Yu, Jianmei Guo, Guisheng Fan, Kai Shi","doi":"10.1109/PIC.2017.8359587","DOIUrl":null,"url":null,"abstract":"Data analysis and utilization play an important role in the development of enterprises. How to extract valuable information from existing data is the focus of current research. Prediction of underfloor heating users is an important and urgent research topic of Gas Co. This paper constructs a prediction model to analyze whether the gas users are underfloor heating users or not based on the gas data sets. Because the training set we obtained only contains one class of data, we adopt the SVDD algorithm, which can effectively solve the one-class classification problem. In the experiment, we construct the prediction model effectively and estimate the proportion of underfloor heating users in gas users. Considering the sensitivity of the parameters in the SVDD algorithm to the prediction model, we obtained the relationship between the proportion of underfloor heating users and the values of parameters through the parameter tuning, which could provide the reference for Gas Co to select parameters.","PeriodicalId":370588,"journal":{"name":"2017 International Conference on Progress in Informatics and Computing (PIC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Underfloor heating users prediction based on SVDD\",\"authors\":\"Xingguang Yang, Huiqun Yu, Jianmei Guo, Guisheng Fan, Kai Shi\",\"doi\":\"10.1109/PIC.2017.8359587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data analysis and utilization play an important role in the development of enterprises. How to extract valuable information from existing data is the focus of current research. Prediction of underfloor heating users is an important and urgent research topic of Gas Co. This paper constructs a prediction model to analyze whether the gas users are underfloor heating users or not based on the gas data sets. Because the training set we obtained only contains one class of data, we adopt the SVDD algorithm, which can effectively solve the one-class classification problem. In the experiment, we construct the prediction model effectively and estimate the proportion of underfloor heating users in gas users. Considering the sensitivity of the parameters in the SVDD algorithm to the prediction model, we obtained the relationship between the proportion of underfloor heating users and the values of parameters through the parameter tuning, which could provide the reference for Gas Co to select parameters.\",\"PeriodicalId\":370588,\"journal\":{\"name\":\"2017 International Conference on Progress in Informatics and Computing (PIC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Progress in Informatics and Computing (PIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC.2017.8359587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2017.8359587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据的分析和利用对企业的发展起着重要的作用。如何从现有数据中提取有价值的信息是当前研究的热点。地暖用户预测是燃气公司一个重要而紧迫的研究课题,本文基于燃气数据集,构建了燃气用户是否是地暖用户的预测模型。由于我们得到的训练集只包含一类数据,所以我们采用SVDD算法,可以有效地解决一类分类问题。在实验中,我们有效地构建了预测模型,估算了地暖用户占燃气用户的比例。考虑到SVDD算法中参数对预测模型的敏感性,通过参数整定得到地暖用户比例与参数值之间的关系,为燃气公司选择参数提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Underfloor heating users prediction based on SVDD
Data analysis and utilization play an important role in the development of enterprises. How to extract valuable information from existing data is the focus of current research. Prediction of underfloor heating users is an important and urgent research topic of Gas Co. This paper constructs a prediction model to analyze whether the gas users are underfloor heating users or not based on the gas data sets. Because the training set we obtained only contains one class of data, we adopt the SVDD algorithm, which can effectively solve the one-class classification problem. In the experiment, we construct the prediction model effectively and estimate the proportion of underfloor heating users in gas users. Considering the sensitivity of the parameters in the SVDD algorithm to the prediction model, we obtained the relationship between the proportion of underfloor heating users and the values of parameters through the parameter tuning, which could provide the reference for Gas Co to select parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信