{"title":"纳米流体流动和传热建模方法综述","authors":"J. Ravnik, J. Tibaut","doi":"10.2495/AFM180021","DOIUrl":null,"url":null,"abstract":"When designing devices in the field of process, power and heat engineering the choice of the fluid that transports heat, mass and momentum is crucial. The thermal properties of such a fluid defines the efficiency of the device. Since the thermal properties of the standard heat transfer fluids, such as water or oil, are not optimal, nanofluids were introduced. A nanofluid is a term describing a dilute dispersion of particles in a fluid. The diameter of particles is in the order of ten nanometres. The particles are made of metal oxides, which enhance the thermal properties of the suspension. In this paper we will present the current trends in nanofluid modelling – from the effective properties approach, an approach that features additional equation for nanofluid concentration – to Euler–Lagrange type approaches.","PeriodicalId":261351,"journal":{"name":"Advances in Fluid Mechanics XII","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A REVIEW OF MODELLING APPROACHES FOR FLOW AND HEAT TRANSFER IN NANOFLUIDS\",\"authors\":\"J. Ravnik, J. Tibaut\",\"doi\":\"10.2495/AFM180021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When designing devices in the field of process, power and heat engineering the choice of the fluid that transports heat, mass and momentum is crucial. The thermal properties of such a fluid defines the efficiency of the device. Since the thermal properties of the standard heat transfer fluids, such as water or oil, are not optimal, nanofluids were introduced. A nanofluid is a term describing a dilute dispersion of particles in a fluid. The diameter of particles is in the order of ten nanometres. The particles are made of metal oxides, which enhance the thermal properties of the suspension. In this paper we will present the current trends in nanofluid modelling – from the effective properties approach, an approach that features additional equation for nanofluid concentration – to Euler–Lagrange type approaches.\",\"PeriodicalId\":261351,\"journal\":{\"name\":\"Advances in Fluid Mechanics XII\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Fluid Mechanics XII\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2495/AFM180021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Fluid Mechanics XII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2495/AFM180021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A REVIEW OF MODELLING APPROACHES FOR FLOW AND HEAT TRANSFER IN NANOFLUIDS
When designing devices in the field of process, power and heat engineering the choice of the fluid that transports heat, mass and momentum is crucial. The thermal properties of such a fluid defines the efficiency of the device. Since the thermal properties of the standard heat transfer fluids, such as water or oil, are not optimal, nanofluids were introduced. A nanofluid is a term describing a dilute dispersion of particles in a fluid. The diameter of particles is in the order of ten nanometres. The particles are made of metal oxides, which enhance the thermal properties of the suspension. In this paper we will present the current trends in nanofluid modelling – from the effective properties approach, an approach that features additional equation for nanofluid concentration – to Euler–Lagrange type approaches.