{"title":"在任意图像中发现“异常”","authors":"Toshifumi Honda, S. Nayar","doi":"10.1109/ICCV.2001.937669","DOIUrl":null,"url":null,"abstract":"A fast and general method to extract \"anomalies\" in an arbitrary image is proposed. The basic idea is to compute a probability density for sub-regions in an image, conditioned upon the areas surrounding the sub-regions. Linear estimation and Independent Component Analysis (ICA) are combined to obtain the probability estimates. Pseudo non-parametric correlation is used to group sets of similar surrounding patterns, from which a probability for the occurrence of a given sub-region is derived. A carefully designed multi-dimensional histogram, based on compressed vector representations, enables efficient and high-resolution extraction of anomalies from the image. Our current (unoptimized) implementation performs anomaly extraction in about 30 seconds for a 640/spl times/480 image using a 700 MHz PC. Experimental results are included that demonstrate the performance of the proposed method.","PeriodicalId":429441,"journal":{"name":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Finding \\\"anomalies\\\" in an arbitrary image\",\"authors\":\"Toshifumi Honda, S. Nayar\",\"doi\":\"10.1109/ICCV.2001.937669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fast and general method to extract \\\"anomalies\\\" in an arbitrary image is proposed. The basic idea is to compute a probability density for sub-regions in an image, conditioned upon the areas surrounding the sub-regions. Linear estimation and Independent Component Analysis (ICA) are combined to obtain the probability estimates. Pseudo non-parametric correlation is used to group sets of similar surrounding patterns, from which a probability for the occurrence of a given sub-region is derived. A carefully designed multi-dimensional histogram, based on compressed vector representations, enables efficient and high-resolution extraction of anomalies from the image. Our current (unoptimized) implementation performs anomaly extraction in about 30 seconds for a 640/spl times/480 image using a 700 MHz PC. Experimental results are included that demonstrate the performance of the proposed method.\",\"PeriodicalId\":429441,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2001.937669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2001.937669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fast and general method to extract "anomalies" in an arbitrary image is proposed. The basic idea is to compute a probability density for sub-regions in an image, conditioned upon the areas surrounding the sub-regions. Linear estimation and Independent Component Analysis (ICA) are combined to obtain the probability estimates. Pseudo non-parametric correlation is used to group sets of similar surrounding patterns, from which a probability for the occurrence of a given sub-region is derived. A carefully designed multi-dimensional histogram, based on compressed vector representations, enables efficient and high-resolution extraction of anomalies from the image. Our current (unoptimized) implementation performs anomaly extraction in about 30 seconds for a 640/spl times/480 image using a 700 MHz PC. Experimental results are included that demonstrate the performance of the proposed method.