在任意图像中发现“异常”

Toshifumi Honda, S. Nayar
{"title":"在任意图像中发现“异常”","authors":"Toshifumi Honda, S. Nayar","doi":"10.1109/ICCV.2001.937669","DOIUrl":null,"url":null,"abstract":"A fast and general method to extract \"anomalies\" in an arbitrary image is proposed. The basic idea is to compute a probability density for sub-regions in an image, conditioned upon the areas surrounding the sub-regions. Linear estimation and Independent Component Analysis (ICA) are combined to obtain the probability estimates. Pseudo non-parametric correlation is used to group sets of similar surrounding patterns, from which a probability for the occurrence of a given sub-region is derived. A carefully designed multi-dimensional histogram, based on compressed vector representations, enables efficient and high-resolution extraction of anomalies from the image. Our current (unoptimized) implementation performs anomaly extraction in about 30 seconds for a 640/spl times/480 image using a 700 MHz PC. Experimental results are included that demonstrate the performance of the proposed method.","PeriodicalId":429441,"journal":{"name":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Finding \\\"anomalies\\\" in an arbitrary image\",\"authors\":\"Toshifumi Honda, S. Nayar\",\"doi\":\"10.1109/ICCV.2001.937669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fast and general method to extract \\\"anomalies\\\" in an arbitrary image is proposed. The basic idea is to compute a probability density for sub-regions in an image, conditioned upon the areas surrounding the sub-regions. Linear estimation and Independent Component Analysis (ICA) are combined to obtain the probability estimates. Pseudo non-parametric correlation is used to group sets of similar surrounding patterns, from which a probability for the occurrence of a given sub-region is derived. A carefully designed multi-dimensional histogram, based on compressed vector representations, enables efficient and high-resolution extraction of anomalies from the image. Our current (unoptimized) implementation performs anomaly extraction in about 30 seconds for a 640/spl times/480 image using a 700 MHz PC. Experimental results are included that demonstrate the performance of the proposed method.\",\"PeriodicalId\":429441,\"journal\":{\"name\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2001.937669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2001.937669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种快速、通用的提取任意图像“异常”的方法。基本思想是计算图像中子区域的概率密度,以子区域周围的区域为条件。采用线性估计和独立分量分析相结合的方法进行概率估计。伪非参数相关性用于对相似周围模式的集合进行分组,从中得出给定子区域出现的概率。一个精心设计的多维直方图,基于压缩矢量表示,能够有效和高分辨率地从图像中提取异常。我们目前的(未优化的)实现使用700 MHz的PC对640/spl times/480的图像在大约30秒内进行异常提取。实验结果证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding "anomalies" in an arbitrary image
A fast and general method to extract "anomalies" in an arbitrary image is proposed. The basic idea is to compute a probability density for sub-regions in an image, conditioned upon the areas surrounding the sub-regions. Linear estimation and Independent Component Analysis (ICA) are combined to obtain the probability estimates. Pseudo non-parametric correlation is used to group sets of similar surrounding patterns, from which a probability for the occurrence of a given sub-region is derived. A carefully designed multi-dimensional histogram, based on compressed vector representations, enables efficient and high-resolution extraction of anomalies from the image. Our current (unoptimized) implementation performs anomaly extraction in about 30 seconds for a 640/spl times/480 image using a 700 MHz PC. Experimental results are included that demonstrate the performance of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信