在印度背景下使用Twitter数据进行犯罪分析和预测

M. Vivek, B. Prathap
{"title":"在印度背景下使用Twitter数据进行犯罪分析和预测","authors":"M. Vivek, B. Prathap","doi":"10.1109/AISC56616.2023.10085282","DOIUrl":null,"url":null,"abstract":"Since the late 1990s, social media has added more features and users. Due to the rise of social media, blogs and posts by common people are now a part of mainstream journalism. Twitter is a place where people can share their ideas about culture, society, the economy, and politics. India's large population and rising crime rate make it hard for law enforcement to find and stop illegal activities. This article shows the use of Twitter data to analyse, forecast, and visualise criminal activity using statistical and machine learning models and geospatial visualisation techniques. This helps law enforcement agencies make the best use of their limited resources and put them in the right places. The research aims to present a spatial and temporal picture of crime in India and is split into three parts: Classification, Visualisation, and Forecasting. Crime tweets are identified using a hashtag query argument in the tweepy python package's search_tweets function, followed by substring-keyword classification. The visualisation uses gmaps and bokeh python packages for geospatial and matplotlib for analytical applications. The forecasting portion compares AR, ARIMA, and LSTM to determine the best model for time series forecasting of crime tweet count.","PeriodicalId":408520,"journal":{"name":"2023 International Conference on Artificial Intelligence and Smart Communication (AISC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crime Analysis and Forecasting using Twitter Data in the Indian Context\",\"authors\":\"M. Vivek, B. Prathap\",\"doi\":\"10.1109/AISC56616.2023.10085282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the late 1990s, social media has added more features and users. Due to the rise of social media, blogs and posts by common people are now a part of mainstream journalism. Twitter is a place where people can share their ideas about culture, society, the economy, and politics. India's large population and rising crime rate make it hard for law enforcement to find and stop illegal activities. This article shows the use of Twitter data to analyse, forecast, and visualise criminal activity using statistical and machine learning models and geospatial visualisation techniques. This helps law enforcement agencies make the best use of their limited resources and put them in the right places. The research aims to present a spatial and temporal picture of crime in India and is split into three parts: Classification, Visualisation, and Forecasting. Crime tweets are identified using a hashtag query argument in the tweepy python package's search_tweets function, followed by substring-keyword classification. The visualisation uses gmaps and bokeh python packages for geospatial and matplotlib for analytical applications. The forecasting portion compares AR, ARIMA, and LSTM to determine the best model for time series forecasting of crime tweet count.\",\"PeriodicalId\":408520,\"journal\":{\"name\":\"2023 International Conference on Artificial Intelligence and Smart Communication (AISC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Artificial Intelligence and Smart Communication (AISC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISC56616.2023.10085282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence and Smart Communication (AISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISC56616.2023.10085282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自20世纪90年代末以来,社交媒体增加了更多的功能和用户。由于社交媒体的兴起,普通人的博客和帖子现在已经成为主流新闻的一部分。推特是一个人们可以分享他们对文化、社会、经济和政治的想法的地方。印度人口众多,犯罪率不断上升,执法部门很难发现和制止非法活动。本文展示了使用Twitter数据分析、预测和可视化犯罪活动,使用统计和机器学习模型以及地理空间可视化技术。这有助于执法机构充分利用有限的资源,并把它们放在正确的地方。该研究旨在呈现印度犯罪的时空图景,分为三个部分:分类、可视化和预测。使用tweepy python包的search_tweets函数中的hashtag查询参数识别犯罪推文,然后使用子字符串关键字分类。可视化使用gmaps和bokeh python包用于地理空间,matplotlib用于分析应用程序。预测部分比较了AR、ARIMA和LSTM,以确定犯罪推文数量时间序列预测的最佳模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crime Analysis and Forecasting using Twitter Data in the Indian Context
Since the late 1990s, social media has added more features and users. Due to the rise of social media, blogs and posts by common people are now a part of mainstream journalism. Twitter is a place where people can share their ideas about culture, society, the economy, and politics. India's large population and rising crime rate make it hard for law enforcement to find and stop illegal activities. This article shows the use of Twitter data to analyse, forecast, and visualise criminal activity using statistical and machine learning models and geospatial visualisation techniques. This helps law enforcement agencies make the best use of their limited resources and put them in the right places. The research aims to present a spatial and temporal picture of crime in India and is split into three parts: Classification, Visualisation, and Forecasting. Crime tweets are identified using a hashtag query argument in the tweepy python package's search_tweets function, followed by substring-keyword classification. The visualisation uses gmaps and bokeh python packages for geospatial and matplotlib for analytical applications. The forecasting portion compares AR, ARIMA, and LSTM to determine the best model for time series forecasting of crime tweet count.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信