{"title":"随机公式,单调电路和插值","authors":"P. Hrubes, P. Pudlák","doi":"10.1109/FOCS.2017.20","DOIUrl":null,"url":null,"abstract":"We prove new lower bounds on the sizes of proofs in the Cutting Plane proof system, using a concept that we call unsatisfiability certificate. This approach is, essentially, equivalent to the well-known feasible interpolation method, but is applicable to CNF formulas that do not seem suitable for interpolation. Specifically, we prove exponential lower bounds for random k-CNFs, where k is the logarithm of the number of variables, and for the Weak Bit Pigeon Hole Principle. Furthermore, we prove a monotone variant of a hypothesis of Feige [12]. We give a superpolynomial lower bound on monotone real circuits that approximately decide the satisfiability of k-CNFs, where k = ω(1). For k ≈ logn, the lower bound is exponential.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Random Formulas, Monotone Circuits, and Interpolation\",\"authors\":\"P. Hrubes, P. Pudlák\",\"doi\":\"10.1109/FOCS.2017.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove new lower bounds on the sizes of proofs in the Cutting Plane proof system, using a concept that we call unsatisfiability certificate. This approach is, essentially, equivalent to the well-known feasible interpolation method, but is applicable to CNF formulas that do not seem suitable for interpolation. Specifically, we prove exponential lower bounds for random k-CNFs, where k is the logarithm of the number of variables, and for the Weak Bit Pigeon Hole Principle. Furthermore, we prove a monotone variant of a hypothesis of Feige [12]. We give a superpolynomial lower bound on monotone real circuits that approximately decide the satisfiability of k-CNFs, where k = ω(1). For k ≈ logn, the lower bound is exponential.\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2017.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
摘要
我们用一个我们称之为不满意证明的概念,证明了切割平面证明系统中样张尺寸的新下界。这种方法本质上相当于众所周知的可行插值方法,但适用于似乎不适合插值的CNF公式。具体来说,我们证明了随机k- cnfs的指数下界,其中k是变量数的对数,以及弱比特鸽子洞原理。进一步,我们证明了Feige[12]的一个假设的单调变体。在单调实电路上给出了近似决定k- cnfs可满足性的一个超多项式下界,其中k = ω(1)。For k ≈Logn,下界是指数。
Random Formulas, Monotone Circuits, and Interpolation
We prove new lower bounds on the sizes of proofs in the Cutting Plane proof system, using a concept that we call unsatisfiability certificate. This approach is, essentially, equivalent to the well-known feasible interpolation method, but is applicable to CNF formulas that do not seem suitable for interpolation. Specifically, we prove exponential lower bounds for random k-CNFs, where k is the logarithm of the number of variables, and for the Weak Bit Pigeon Hole Principle. Furthermore, we prove a monotone variant of a hypothesis of Feige [12]. We give a superpolynomial lower bound on monotone real circuits that approximately decide the satisfiability of k-CNFs, where k = ω(1). For k ≈ logn, the lower bound is exponential.