改进了阿拉伯语口语使用者的方言识别

Rania R. Ziedan, Michael N. Micheal, Abdulwahab K. Alsammak, M. Mursi, Adel Said Elmaghraby
{"title":"改进了阿拉伯语口语使用者的方言识别","authors":"Rania R. Ziedan, Michael N. Micheal, Abdulwahab K. Alsammak, M. Mursi, Adel Said Elmaghraby","doi":"10.1109/ISSPIT.2016.7886002","DOIUrl":null,"url":null,"abstract":"This article proposes a gender and geographical origin recognition system for Arabic speakers based on the dialect and accent characteristics. We demonstrate that the speaker gender and nationality can be determined from colloquial Arabic speech and recommend that this system can be integrated to more complex biometric applications. The acoustic features of our proposed dataset used to identify the speaker's dialect and accent, are extracted using Mel Frequency Cepstral Coefficients (MFCC) and Relative Spectral Analysis (RASTA) techniques. We compare results of classification based on Gaussian Mixture Model with Universal Background Model (GMM-UBM) and Identity Vector (I-vector) classifiers implemented using the MSR Identity Toolbox, which is a MATLAB toolbox for speaker-recognition research from Microsoft. The results show a significant decrease of equal error rate (EER) when recognizing dialect or accent based on gender. In addition, feature fusion of RASTA and MFCC is used to enhance the EER. Results show a 9.8% enhancement in EER over using the RASTA features only.","PeriodicalId":371691,"journal":{"name":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improved dialect recognition for colloquial Arabic speakers\",\"authors\":\"Rania R. Ziedan, Michael N. Micheal, Abdulwahab K. Alsammak, M. Mursi, Adel Said Elmaghraby\",\"doi\":\"10.1109/ISSPIT.2016.7886002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a gender and geographical origin recognition system for Arabic speakers based on the dialect and accent characteristics. We demonstrate that the speaker gender and nationality can be determined from colloquial Arabic speech and recommend that this system can be integrated to more complex biometric applications. The acoustic features of our proposed dataset used to identify the speaker's dialect and accent, are extracted using Mel Frequency Cepstral Coefficients (MFCC) and Relative Spectral Analysis (RASTA) techniques. We compare results of classification based on Gaussian Mixture Model with Universal Background Model (GMM-UBM) and Identity Vector (I-vector) classifiers implemented using the MSR Identity Toolbox, which is a MATLAB toolbox for speaker-recognition research from Microsoft. The results show a significant decrease of equal error rate (EER) when recognizing dialect or accent based on gender. In addition, feature fusion of RASTA and MFCC is used to enhance the EER. Results show a 9.8% enhancement in EER over using the RASTA features only.\",\"PeriodicalId\":371691,\"journal\":{\"name\":\"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2016.7886002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2016.7886002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于阿拉伯语方言和口音特征的性别和地理来源识别系统。我们证明了说话者的性别和国籍可以从阿拉伯语口语中确定,并建议该系统可以集成到更复杂的生物识别应用中。我们提出的数据集的声学特征用于识别说话人的方言和口音,使用Mel频率倒谱系数(MFCC)和相对频谱分析(RASTA)技术提取。我们比较了基于高斯混合模型的通用背景模型(GMM-UBM)和使用MSR Identity Toolbox实现的身份向量(I-vector)分类器的分类结果,MSR Identity Toolbox是微软用于说话人识别研究的MATLAB工具箱。结果表明,基于性别的方言或口音识别的等错误率(EER)显著降低。此外,利用RASTA和MFCC的特征融合来增强EER。结果显示,与仅使用RASTA特征相比,EER提高了9.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improved dialect recognition for colloquial Arabic speakers
This article proposes a gender and geographical origin recognition system for Arabic speakers based on the dialect and accent characteristics. We demonstrate that the speaker gender and nationality can be determined from colloquial Arabic speech and recommend that this system can be integrated to more complex biometric applications. The acoustic features of our proposed dataset used to identify the speaker's dialect and accent, are extracted using Mel Frequency Cepstral Coefficients (MFCC) and Relative Spectral Analysis (RASTA) techniques. We compare results of classification based on Gaussian Mixture Model with Universal Background Model (GMM-UBM) and Identity Vector (I-vector) classifiers implemented using the MSR Identity Toolbox, which is a MATLAB toolbox for speaker-recognition research from Microsoft. The results show a significant decrease of equal error rate (EER) when recognizing dialect or accent based on gender. In addition, feature fusion of RASTA and MFCC is used to enhance the EER. Results show a 9.8% enhancement in EER over using the RASTA features only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信