使用广义潜在语义分析自动作文评分

Md. Monjurul Islam, A. S. M. L. Hoque
{"title":"使用广义潜在语义分析自动作文评分","authors":"Md. Monjurul Islam, A. S. M. L. Hoque","doi":"10.4304/jcp.7.3.616-626","DOIUrl":null,"url":null,"abstract":"Automated Essay Grading (AEG) is a very important research area in educational technology. Latent Semantic Analysis (LSA) is an information retrieval technique used for automated essay grading. LSA forms a word by document matrix and then the matrix is decomposed using Singular Value Decomposition (SVD) technique. Existing AEG systems based on LSA cannot achieve higher level of performance to be a replica of human grader. We have developed an AEG system using Generalized Latent Semantic Analysis (GLSA) which makes n-gram by document matrix instead of word by document matrix. We have evaluated this system using details representation and showed the performance of the system. Experimental results show that our system outperforms the existing system.","PeriodicalId":149135,"journal":{"name":"2010 13th International Conference on Computer and Information Technology (ICCIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":"{\"title\":\"Automated essay scoring using Generalized Latent Semantic Analysis\",\"authors\":\"Md. Monjurul Islam, A. S. M. L. Hoque\",\"doi\":\"10.4304/jcp.7.3.616-626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated Essay Grading (AEG) is a very important research area in educational technology. Latent Semantic Analysis (LSA) is an information retrieval technique used for automated essay grading. LSA forms a word by document matrix and then the matrix is decomposed using Singular Value Decomposition (SVD) technique. Existing AEG systems based on LSA cannot achieve higher level of performance to be a replica of human grader. We have developed an AEG system using Generalized Latent Semantic Analysis (GLSA) which makes n-gram by document matrix instead of word by document matrix. We have evaluated this system using details representation and showed the performance of the system. Experimental results show that our system outperforms the existing system.\",\"PeriodicalId\":149135,\"journal\":{\"name\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"65\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4304/jcp.7.3.616-626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4304/jcp.7.3.616-626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

摘要

论文自动评分(AEG)是教育技术领域的一个重要研究方向。潜在语义分析(LSA)是一种用于自动作文评分的信息检索技术。LSA由文档矩阵形成一个词,然后使用奇异值分解(SVD)技术对矩阵进行分解。现有的基于LSA的AEG系统无法达到更高的性能水平,无法成为人类评分员的复制品。我们开发了一种基于广义潜在语义分析(GLSA)的AEG系统,该系统采用按文档矩阵生成n-gram,而不是按文档矩阵生成n-gram。我们使用细节表示对系统进行了评估,并展示了系统的性能。实验结果表明,该系统优于现有系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated essay scoring using Generalized Latent Semantic Analysis
Automated Essay Grading (AEG) is a very important research area in educational technology. Latent Semantic Analysis (LSA) is an information retrieval technique used for automated essay grading. LSA forms a word by document matrix and then the matrix is decomposed using Singular Value Decomposition (SVD) technique. Existing AEG systems based on LSA cannot achieve higher level of performance to be a replica of human grader. We have developed an AEG system using Generalized Latent Semantic Analysis (GLSA) which makes n-gram by document matrix instead of word by document matrix. We have evaluated this system using details representation and showed the performance of the system. Experimental results show that our system outperforms the existing system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信