Alessandro Palandri
{"title":"Beatlestrap","authors":"Alessandro Palandri","doi":"10.2139/ssrn.1711400","DOIUrl":null,"url":null,"abstract":"The bootstrap of test statistics requires the re-estimation of the model's parameters for each bootstrap sample. When parameter estimates are not available in closed form, this procedure becomes computationally demanding as each replication requires the numerical optimization of an objective function. This paper investigates the feasibility of the Beatlestrap, an optimization-free approach to bootstrap. It is shown that, ex-post, M-estimators may be expressed in terms of simple arithmetic averages therefore reducing the bootstrap of Wald statistics to the bootstrap of averages. Similarly, it is shown how the Lagrange Multiplier and the Likelihood Ratio statistics may be bootstrapped bypassing the objective function's multiple optimizations. The proposed approach is extended to simulation based Indirect Estimators. The finite sample properties of Beatlestrap are investigated via Monte Carlo simulations.","PeriodicalId":381400,"journal":{"name":"Warwick Business School Finance Group Research Paper Series","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Warwick Business School Finance Group Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1711400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

检验统计量的自举需要对每个自举样本的模型参数进行重新估计。当参数估计不能以封闭形式提供时,这个过程的计算要求很高,因为每次复制都需要对目标函数进行数值优化。本文研究了Beatlestrap的可行性,Beatlestrap是一种无需优化的bootstrap方法。结果表明,事后m估计量可以用简单算术平均表示,从而将Wald统计量的自举简化为平均值的自举。类似地,它显示了拉格朗日乘数和似然比统计数据是如何绕过目标函数的多重优化来引导的。将该方法推广到基于仿真的间接估计器。通过蒙特卡罗模拟研究了Beatlestrap的有限样本特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beatlestrap
The bootstrap of test statistics requires the re-estimation of the model's parameters for each bootstrap sample. When parameter estimates are not available in closed form, this procedure becomes computationally demanding as each replication requires the numerical optimization of an objective function. This paper investigates the feasibility of the Beatlestrap, an optimization-free approach to bootstrap. It is shown that, ex-post, M-estimators may be expressed in terms of simple arithmetic averages therefore reducing the bootstrap of Wald statistics to the bootstrap of averages. Similarly, it is shown how the Lagrange Multiplier and the Likelihood Ratio statistics may be bootstrapped bypassing the objective function's multiple optimizations. The proposed approach is extended to simulation based Indirect Estimators. The finite sample properties of Beatlestrap are investigated via Monte Carlo simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信