通过翻译丰富文档表示以改进单语信息检索

Seung-Hoon Na, H. Ng
{"title":"通过翻译丰富文档表示以改进单语信息检索","authors":"Seung-Hoon Na, H. Ng","doi":"10.1145/2009916.2010030","DOIUrl":null,"url":null,"abstract":"Word ambiguity and vocabulary mismatch are critical problems in information retrieval. To deal with these problems, this paper proposes the use of translated words to enrich document representation, going beyond the words in the original source language to represent a document. In our approach, each original document is automatically translated into an auxiliary language, and the resulting translated document serves as a semantically enhanced representation for supplementing the original bag of words. The core of our translation representation is the expected term frequency of a word in a translated document, which is calculated by averaging the term frequencies over all possible translations, rather than focusing on the 1-best translation only. To achieve better efficiency of translation, we do not rely on full-fledged machine translation, but instead use monotonic translation by removing the time-consuming reordering component. Experiments carried out on standard TREC test collections show that our proposed translation representation leads to statistically significant improvements over using only the original language of the document collection.","PeriodicalId":356580,"journal":{"name":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Enriching document representation via translation for improved monolingual information retrieval\",\"authors\":\"Seung-Hoon Na, H. Ng\",\"doi\":\"10.1145/2009916.2010030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Word ambiguity and vocabulary mismatch are critical problems in information retrieval. To deal with these problems, this paper proposes the use of translated words to enrich document representation, going beyond the words in the original source language to represent a document. In our approach, each original document is automatically translated into an auxiliary language, and the resulting translated document serves as a semantically enhanced representation for supplementing the original bag of words. The core of our translation representation is the expected term frequency of a word in a translated document, which is calculated by averaging the term frequencies over all possible translations, rather than focusing on the 1-best translation only. To achieve better efficiency of translation, we do not rely on full-fledged machine translation, but instead use monotonic translation by removing the time-consuming reordering component. Experiments carried out on standard TREC test collections show that our proposed translation representation leads to statistically significant improvements over using only the original language of the document collection.\",\"PeriodicalId\":356580,\"journal\":{\"name\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2009916.2010030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2009916.2010030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

词语歧义和词汇错配是信息检索中的关键问题。针对这些问题,本文提出利用翻译后的词语来丰富文档表示,超越原源语言中的词语来表示文档。在我们的方法中,每个原始文档被自动翻译成辅助语言,结果翻译的文档作为语义增强的表示,用于补充原始的单词包。我们的翻译表示的核心是翻译文档中一个单词的预期术语频率,它是通过对所有可能的翻译的术语频率进行平均计算得出的,而不是只关注1个最好的翻译。为了达到更好的翻译效率,我们不依赖于成熟的机器翻译,而是通过去除耗时的重新排序组件来使用单调翻译。在标准TREC测试集合上进行的实验表明,与仅使用文档集合的原始语言相比,我们提出的翻译表示在统计上有显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enriching document representation via translation for improved monolingual information retrieval
Word ambiguity and vocabulary mismatch are critical problems in information retrieval. To deal with these problems, this paper proposes the use of translated words to enrich document representation, going beyond the words in the original source language to represent a document. In our approach, each original document is automatically translated into an auxiliary language, and the resulting translated document serves as a semantically enhanced representation for supplementing the original bag of words. The core of our translation representation is the expected term frequency of a word in a translated document, which is calculated by averaging the term frequencies over all possible translations, rather than focusing on the 1-best translation only. To achieve better efficiency of translation, we do not rely on full-fledged machine translation, but instead use monotonic translation by removing the time-consuming reordering component. Experiments carried out on standard TREC test collections show that our proposed translation representation leads to statistically significant improvements over using only the original language of the document collection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信