T. Mertens, J. Kautz, Jiawen Chen, P. Bekaert, F. Durand
{"title":"纹理传输使用几何相关","authors":"T. Mertens, J. Kautz, Jiawen Chen, P. Bekaert, F. Durand","doi":"10.2312/EGWR/EGSR06/273-284","DOIUrl":null,"url":null,"abstract":"Texture variation on real-world objects often correlates with underlying geometric characteristics and creates a visually rich appearance. We present a technique to transfer such geometry-dependent texture variation from an example textured model to new geometry in a visually consistent way. It captures the correlation between a set of geometric features, such as curvature, and the observed diffuse texture. We perform dimensionality reduction on the overcomplete feature set which yields a compact guidance field that is used to drive a spatially varying texture synthesis model. In addition, we introduce a method to enrich the guidance field when the target geometry strongly differs from the example. Our method transfers elaborate texture variation that follows geometric features, which gives 3D models a compelling photorealistic appearance.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Texture transfer using geometry correlation\",\"authors\":\"T. Mertens, J. Kautz, Jiawen Chen, P. Bekaert, F. Durand\",\"doi\":\"10.2312/EGWR/EGSR06/273-284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Texture variation on real-world objects often correlates with underlying geometric characteristics and creates a visually rich appearance. We present a technique to transfer such geometry-dependent texture variation from an example textured model to new geometry in a visually consistent way. It captures the correlation between a set of geometric features, such as curvature, and the observed diffuse texture. We perform dimensionality reduction on the overcomplete feature set which yields a compact guidance field that is used to drive a spatially varying texture synthesis model. In addition, we introduce a method to enrich the guidance field when the target geometry strongly differs from the example. Our method transfers elaborate texture variation that follows geometric features, which gives 3D models a compelling photorealistic appearance.\",\"PeriodicalId\":363391,\"journal\":{\"name\":\"Eurographics Symposium on Rendering\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurographics Symposium on Rendering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/EGWR/EGSR06/273-284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Symposium on Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/EGWR/EGSR06/273-284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Texture variation on real-world objects often correlates with underlying geometric characteristics and creates a visually rich appearance. We present a technique to transfer such geometry-dependent texture variation from an example textured model to new geometry in a visually consistent way. It captures the correlation between a set of geometric features, such as curvature, and the observed diffuse texture. We perform dimensionality reduction on the overcomplete feature set which yields a compact guidance field that is used to drive a spatially varying texture synthesis model. In addition, we introduce a method to enrich the guidance field when the target geometry strongly differs from the example. Our method transfers elaborate texture variation that follows geometric features, which gives 3D models a compelling photorealistic appearance.