{"title":"促进信息物理系统协同网络验证的半自动化方法","authors":"Marian Daun, Jennifer Brings, Thorsten Weyer","doi":"10.1145/3196478.3196483","DOIUrl":null,"url":null,"abstract":"Cyber-physical systems form collaborative networks dynamically at runtime. In the collaboration of multiple systems, behavior emerges in the interplay of the collaborating instances. This emergent behavior raises challenges for the validation of cyber-physical systems’ software, since interoperability of the single systems as well as functional correctness of the entire network of collaborative cyber-physical systems must be validated for all possible configurations of the network. Such network configurations differ, among others, in the number of participating systems, the number of system types involved, and the communication patterns between the participating systems. To aid the validation of behavior emerging from the collaboration, this paper proposes the automated generation of dedicated review diagrams to investigate the collaborative network’s behavior for different network configurations. First evaluations using case examples from industry partners show that the use of such automatically generated instance level review diagrams can support the validation of collaborative cyber-physical systems.","PeriodicalId":205313,"journal":{"name":"2018 IEEE/ACM 4th International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Semi-Automated Approach to Foster the Validation of Collaborative Networks of Cyber-Physical Systems\",\"authors\":\"Marian Daun, Jennifer Brings, Thorsten Weyer\",\"doi\":\"10.1145/3196478.3196483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-physical systems form collaborative networks dynamically at runtime. In the collaboration of multiple systems, behavior emerges in the interplay of the collaborating instances. This emergent behavior raises challenges for the validation of cyber-physical systems’ software, since interoperability of the single systems as well as functional correctness of the entire network of collaborative cyber-physical systems must be validated for all possible configurations of the network. Such network configurations differ, among others, in the number of participating systems, the number of system types involved, and the communication patterns between the participating systems. To aid the validation of behavior emerging from the collaboration, this paper proposes the automated generation of dedicated review diagrams to investigate the collaborative network’s behavior for different network configurations. First evaluations using case examples from industry partners show that the use of such automatically generated instance level review diagrams can support the validation of collaborative cyber-physical systems.\",\"PeriodicalId\":205313,\"journal\":{\"name\":\"2018 IEEE/ACM 4th International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 4th International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3196478.3196483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 4th International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3196478.3196483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Semi-Automated Approach to Foster the Validation of Collaborative Networks of Cyber-Physical Systems
Cyber-physical systems form collaborative networks dynamically at runtime. In the collaboration of multiple systems, behavior emerges in the interplay of the collaborating instances. This emergent behavior raises challenges for the validation of cyber-physical systems’ software, since interoperability of the single systems as well as functional correctness of the entire network of collaborative cyber-physical systems must be validated for all possible configurations of the network. Such network configurations differ, among others, in the number of participating systems, the number of system types involved, and the communication patterns between the participating systems. To aid the validation of behavior emerging from the collaboration, this paper proposes the automated generation of dedicated review diagrams to investigate the collaborative network’s behavior for different network configurations. First evaluations using case examples from industry partners show that the use of such automatically generated instance level review diagrams can support the validation of collaborative cyber-physical systems.