{"title":"基于ls - svmr的离群值加权系统辨识","authors":"Congjun Ma, Haipeng Wang, T. Zhao, S. Dian","doi":"10.1145/3351917.3351940","DOIUrl":null,"url":null,"abstract":"Plenty of methods applied in system identification, while those based on data-driven are increasingly popular. Usually we ignore the absence of outliers among the system to be modeled, but it is unreachable in reality. To improve the precision of identification towards system with outliers, advantageous approaches with robustness are needed. This study analyzes the superiority of weighted Least Square Support Vector Machine Regression (LS-SVMR) in the field of system identification under random outliers, and compare it with LS-SVMR mainly.","PeriodicalId":367885,"journal":{"name":"Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Weighted LS-SVMR-Based System Identification with Outliers\",\"authors\":\"Congjun Ma, Haipeng Wang, T. Zhao, S. Dian\",\"doi\":\"10.1145/3351917.3351940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plenty of methods applied in system identification, while those based on data-driven are increasingly popular. Usually we ignore the absence of outliers among the system to be modeled, but it is unreachable in reality. To improve the precision of identification towards system with outliers, advantageous approaches with robustness are needed. This study analyzes the superiority of weighted Least Square Support Vector Machine Regression (LS-SVMR) in the field of system identification under random outliers, and compare it with LS-SVMR mainly.\",\"PeriodicalId\":367885,\"journal\":{\"name\":\"Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3351917.3351940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3351917.3351940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Weighted LS-SVMR-Based System Identification with Outliers
Plenty of methods applied in system identification, while those based on data-driven are increasingly popular. Usually we ignore the absence of outliers among the system to be modeled, but it is unreachable in reality. To improve the precision of identification towards system with outliers, advantageous approaches with robustness are needed. This study analyzes the superiority of weighted Least Square Support Vector Machine Regression (LS-SVMR) in the field of system identification under random outliers, and compare it with LS-SVMR mainly.