基于无adc混合信号特征提取和深度神经网络分类在线训练的全集成康复手势和步态处理SoC

Yijie Wei, Qiankai Cao, Jie Gu, Kofi Otseidu, L. Hargrove
{"title":"基于无adc混合信号特征提取和深度神经网络分类在线训练的全集成康复手势和步态处理SoC","authors":"Yijie Wei, Qiankai Cao, Jie Gu, Kofi Otseidu, L. Hargrove","doi":"10.1109/CICC48029.2020.9075910","DOIUrl":null,"url":null,"abstract":"An ultra-low-power gesture and gait classification SoC is presented for rehabilitation application featuring (1) mixed-signal feature extraction and integrated low-noise amplifier eliminating expensive ADC and digital feature extraction, (2) an integrated distributed deep neural network (DNN) ASIC supporting a scalable multi-chip neural network for sensor fusion with distortion resiliency for low-cost front end modules, (3) onchip learning of DNN engine allowing in-situ training of user specific operations. A 12-channel 65nm CMOS test chip was fabricated with 1μW power per channel, less than 3ms computation latency, on-chip training for user-specific DNN model and multi-chip networking capability.","PeriodicalId":409525,"journal":{"name":"2020 IEEE Custom Integrated Circuits Conference (CICC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Fully-integrated Gesture and Gait Processing SoC for Rehabilitation with ADC-less Mixed-signal Feature Extraction and Deep Neural Network for Classification and Online Training\",\"authors\":\"Yijie Wei, Qiankai Cao, Jie Gu, Kofi Otseidu, L. Hargrove\",\"doi\":\"10.1109/CICC48029.2020.9075910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An ultra-low-power gesture and gait classification SoC is presented for rehabilitation application featuring (1) mixed-signal feature extraction and integrated low-noise amplifier eliminating expensive ADC and digital feature extraction, (2) an integrated distributed deep neural network (DNN) ASIC supporting a scalable multi-chip neural network for sensor fusion with distortion resiliency for low-cost front end modules, (3) onchip learning of DNN engine allowing in-situ training of user specific operations. A 12-channel 65nm CMOS test chip was fabricated with 1μW power per channel, less than 3ms computation latency, on-chip training for user-specific DNN model and multi-chip networking capability.\",\"PeriodicalId\":409525,\"journal\":{\"name\":\"2020 IEEE Custom Integrated Circuits Conference (CICC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Custom Integrated Circuits Conference (CICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICC48029.2020.9075910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC48029.2020.9075910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种用于康复应用的超低功耗手势和步态分类SoC,其特点是:(1)混合信号特征提取和集成低噪声放大器,消除了昂贵的ADC和数字特征提取;(2)集成分布式深度神经网络(DNN) ASIC支持可扩展的多芯片神经网络,用于低成本前端模块的传感器融合和畸变弹性。(3) DNN引擎的片上学习,可对用户具体操作进行现场训练。制作了12通道65nm CMOS测试芯片,每通道功率为1μW,计算延迟小于3ms,具有针对用户特定DNN模型的片上训练和多芯片组网能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fully-integrated Gesture and Gait Processing SoC for Rehabilitation with ADC-less Mixed-signal Feature Extraction and Deep Neural Network for Classification and Online Training
An ultra-low-power gesture and gait classification SoC is presented for rehabilitation application featuring (1) mixed-signal feature extraction and integrated low-noise amplifier eliminating expensive ADC and digital feature extraction, (2) an integrated distributed deep neural network (DNN) ASIC supporting a scalable multi-chip neural network for sensor fusion with distortion resiliency for low-cost front end modules, (3) onchip learning of DNN engine allowing in-situ training of user specific operations. A 12-channel 65nm CMOS test chip was fabricated with 1μW power per channel, less than 3ms computation latency, on-chip training for user-specific DNN model and multi-chip networking capability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信