一种用于系统辨识的分层前馈自适应滤波器

Christos Boukis, D. Mandic, A. Constantinides
{"title":"一种用于系统辨识的分层前馈自适应滤波器","authors":"Christos Boukis, D. Mandic, A. Constantinides","doi":"10.1109/NNSP.2002.1030038","DOIUrl":null,"url":null,"abstract":"An architecture for adaptive filtering based upon the previously introduced hierarchical least mean square algorithm is proposed. This pyramidal architecture incorporates sparse connections between the architectural layers with a certain variable degree of overlapping between the neighboring subfilters of the same level. A learning algorithm for this class of structures is derived, based on the back-propagation algorithm for temporal feedforward networks with linear neurons. Further, a class of normalized algorithms for this class is derived. The analysis and simulations show the proposed algorithms outperform the existing ones.","PeriodicalId":117945,"journal":{"name":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A hierarchical feedforward adaptive filter for system identification\",\"authors\":\"Christos Boukis, D. Mandic, A. Constantinides\",\"doi\":\"10.1109/NNSP.2002.1030038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An architecture for adaptive filtering based upon the previously introduced hierarchical least mean square algorithm is proposed. This pyramidal architecture incorporates sparse connections between the architectural layers with a certain variable degree of overlapping between the neighboring subfilters of the same level. A learning algorithm for this class of structures is derived, based on the back-propagation algorithm for temporal feedforward networks with linear neurons. Further, a class of normalized algorithms for this class is derived. The analysis and simulations show the proposed algorithms outperform the existing ones.\",\"PeriodicalId\":117945,\"journal\":{\"name\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.2002.1030038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2002.1030038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于分层最小均方算法的自适应滤波结构。这种金字塔结构结合了建筑层之间的稀疏连接,并在同一层的相邻子过滤器之间具有一定的可变程度的重叠。基于线性神经元时间前馈网络的反向传播算法,导出了这类结构的学习算法。进一步,导出了该类的一类规范化算法。分析和仿真结果表明,所提算法优于现有算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hierarchical feedforward adaptive filter for system identification
An architecture for adaptive filtering based upon the previously introduced hierarchical least mean square algorithm is proposed. This pyramidal architecture incorporates sparse connections between the architectural layers with a certain variable degree of overlapping between the neighboring subfilters of the same level. A learning algorithm for this class of structures is derived, based on the back-propagation algorithm for temporal feedforward networks with linear neurons. Further, a class of normalized algorithms for this class is derived. The analysis and simulations show the proposed algorithms outperform the existing ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信