基于人工免疫系统的遥感图像分类研究

X. Qin
{"title":"基于人工免疫系统的遥感图像分类研究","authors":"X. Qin","doi":"10.1109/CSAE.2011.5952734","DOIUrl":null,"url":null,"abstract":"On the base of analyzing the disadvantages of the negative selection algorithm, a bidirectional selection algorithm based on artificial immune system is presented. Clone selection and mutation algorithms are used on the training sample set to obtain mature antibody set. Then the mature antibody set can be used to classify the remote sensing image. It is demonstrated that this algorithm is superior to conventional maximum likelihood classification. Its accuracy reaches 87.4 percent.","PeriodicalId":138215,"journal":{"name":"2011 IEEE International Conference on Computer Science and Automation Engineering","volume":"156 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on remote sensing image classification based on artificial immune system\",\"authors\":\"X. Qin\",\"doi\":\"10.1109/CSAE.2011.5952734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On the base of analyzing the disadvantages of the negative selection algorithm, a bidirectional selection algorithm based on artificial immune system is presented. Clone selection and mutation algorithms are used on the training sample set to obtain mature antibody set. Then the mature antibody set can be used to classify the remote sensing image. It is demonstrated that this algorithm is superior to conventional maximum likelihood classification. Its accuracy reaches 87.4 percent.\",\"PeriodicalId\":138215,\"journal\":{\"name\":\"2011 IEEE International Conference on Computer Science and Automation Engineering\",\"volume\":\"156 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Computer Science and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSAE.2011.5952734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAE.2011.5952734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在分析负选择算法缺点的基础上,提出了一种基于人工免疫系统的双向选择算法。对训练样本集采用克隆选择和突变算法,得到成熟抗体集。然后利用成熟抗体集对遥感图像进行分类。结果表明,该算法优于传统的最大似然分类。其准确率达到87.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on remote sensing image classification based on artificial immune system
On the base of analyzing the disadvantages of the negative selection algorithm, a bidirectional selection algorithm based on artificial immune system is presented. Clone selection and mutation algorithms are used on the training sample set to obtain mature antibody set. Then the mature antibody set can be used to classify the remote sensing image. It is demonstrated that this algorithm is superior to conventional maximum likelihood classification. Its accuracy reaches 87.4 percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信