R. Brouzet, G. Michaille, W. Puech, J. Rakotondralambo
{"title":"Mumford-Shah型能量泛函解的跳跃和近似梯度分析","authors":"R. Brouzet, G. Michaille, W. Puech, J. Rakotondralambo","doi":"10.1109/UKRICIS.2010.5898121","DOIUrl":null,"url":null,"abstract":"The main objective of this paper is to introduce and illustrate a new tool stemming from Young measure theory in order to capture concentrations, jump sign and gradient oscillations of sequences of SBV-functions. We show how this notion of measure can be applied for the analysis of approximating solutions of Mumford-Shah type energy functionals in the one dimensional case.","PeriodicalId":359942,"journal":{"name":"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the jump and approximate gradient for solutions of Mumford-Shah type energy functionals\",\"authors\":\"R. Brouzet, G. Michaille, W. Puech, J. Rakotondralambo\",\"doi\":\"10.1109/UKRICIS.2010.5898121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this paper is to introduce and illustrate a new tool stemming from Young measure theory in order to capture concentrations, jump sign and gradient oscillations of sequences of SBV-functions. We show how this notion of measure can be applied for the analysis of approximating solutions of Mumford-Shah type energy functionals in the one dimensional case.\",\"PeriodicalId\":359942,\"journal\":{\"name\":\"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKRICIS.2010.5898121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 9th International Conference on Cyberntic Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKRICIS.2010.5898121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of the jump and approximate gradient for solutions of Mumford-Shah type energy functionals
The main objective of this paper is to introduce and illustrate a new tool stemming from Young measure theory in order to capture concentrations, jump sign and gradient oscillations of sequences of SBV-functions. We show how this notion of measure can be applied for the analysis of approximating solutions of Mumford-Shah type energy functionals in the one dimensional case.