基于基数小波和对称小波的优化构造

Neil D. Dizon, J. Hogan, J. Lakey
{"title":"基于基数小波和对称小波的优化构造","authors":"Neil D. Dizon, J. Hogan, J. Lakey","doi":"10.1142/s021969132150048x","DOIUrl":null,"url":null,"abstract":"We present an optimization approach to wavelet architecture that hinges on the Zak transform to formulate the construction as a minimization problem. The transform warrants parametrization of the quadrature mirror filter in terms of the possible integer sample values of the scaling function and the associated wavelet. The parameters are predicated to satisfy constraints derived from the conditions of regularity, compact support and orthonormality. This approach allows for the construction of nearly cardinal scaling functions when an objective function that measures deviation from cardinality is minimized. A similar objective function based on a measure of symmetry is also proposed to facilitate the construction of nearly symmetric scaling functions on the line.","PeriodicalId":158567,"journal":{"name":"Int. J. Wavelets Multiresolution Inf. Process.","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimization in the construction of cardinal and symmetric wavelets on the line\",\"authors\":\"Neil D. Dizon, J. Hogan, J. Lakey\",\"doi\":\"10.1142/s021969132150048x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an optimization approach to wavelet architecture that hinges on the Zak transform to formulate the construction as a minimization problem. The transform warrants parametrization of the quadrature mirror filter in terms of the possible integer sample values of the scaling function and the associated wavelet. The parameters are predicated to satisfy constraints derived from the conditions of regularity, compact support and orthonormality. This approach allows for the construction of nearly cardinal scaling functions when an objective function that measures deviation from cardinality is minimized. A similar objective function based on a measure of symmetry is also proposed to facilitate the construction of nearly symmetric scaling functions on the line.\",\"PeriodicalId\":158567,\"journal\":{\"name\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Wavelets Multiresolution Inf. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s021969132150048x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Wavelets Multiresolution Inf. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s021969132150048x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种小波结构的优化方法,该方法依赖于Zak变换来将结构表述为最小化问题。该变换保证了正交镜像滤波器在尺度函数和相关小波的可能整数样本值方面的参数化。根据正则性条件、紧支持条件和正交性条件对参数进行了预测。当测量基数偏差的目标函数被最小化时,这种方法允许构造接近基数的缩放函数。为了便于在直线上构造近似对称的标度函数,还提出了一个基于对称测度的类似目标函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization in the construction of cardinal and symmetric wavelets on the line
We present an optimization approach to wavelet architecture that hinges on the Zak transform to formulate the construction as a minimization problem. The transform warrants parametrization of the quadrature mirror filter in terms of the possible integer sample values of the scaling function and the associated wavelet. The parameters are predicated to satisfy constraints derived from the conditions of regularity, compact support and orthonormality. This approach allows for the construction of nearly cardinal scaling functions when an objective function that measures deviation from cardinality is minimized. A similar objective function based on a measure of symmetry is also proposed to facilitate the construction of nearly symmetric scaling functions on the line.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信