二维逆FDA人脸识别

Wankou Yang, Hui Yan, Jun Yin, Jingyu Yang
{"title":"二维逆FDA人脸识别","authors":"Wankou Yang, Hui Yan, Jun Yin, Jingyu Yang","doi":"10.1109/CCPR.2008.51","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a two-dimensional Inverse Fisher Discriminant Analysis (2DIFDA) method for feature extraction and face recognition. This method combines the ideas of two-dimensional principal component analysis and Inverse FDA and it can directly extracts the optimal projective vectors from 2D image matrices rather than image vectors based on the inverse fisher discriminant criterion. Experiments on the FERET face databases show that the new method outperforms the PCA , 2DPCA, Fisherfaces and the inverse fisher discriminant analysis.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"11647 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Two-Dimensional Inverse FDA for Face Recognition\",\"authors\":\"Wankou Yang, Hui Yan, Jun Yin, Jingyu Yang\",\"doi\":\"10.1109/CCPR.2008.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a two-dimensional Inverse Fisher Discriminant Analysis (2DIFDA) method for feature extraction and face recognition. This method combines the ideas of two-dimensional principal component analysis and Inverse FDA and it can directly extracts the optimal projective vectors from 2D image matrices rather than image vectors based on the inverse fisher discriminant criterion. Experiments on the FERET face databases show that the new method outperforms the PCA , 2DPCA, Fisherfaces and the inverse fisher discriminant analysis.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"11647 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种用于特征提取和人脸识别的二维反费雪判别分析(2DIFDA)方法。该方法结合了二维主成分分析和逆FDA的思想,可以直接从二维图像矩阵中提取最优的投影向量,而不是基于逆fisher判别准则的图像向量。在FERET人脸数据库上的实验表明,该方法优于PCA、2DPCA、Fisherfaces和逆fisher判别分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Dimensional Inverse FDA for Face Recognition
In this paper, we propose a two-dimensional Inverse Fisher Discriminant Analysis (2DIFDA) method for feature extraction and face recognition. This method combines the ideas of two-dimensional principal component analysis and Inverse FDA and it can directly extracts the optimal projective vectors from 2D image matrices rather than image vectors based on the inverse fisher discriminant criterion. Experiments on the FERET face databases show that the new method outperforms the PCA , 2DPCA, Fisherfaces and the inverse fisher discriminant analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信