{"title":"结花同源性综述","authors":"P. Ozsváth, Z. Szabó","doi":"10.1090/PSPUM/099/01742","DOIUrl":null,"url":null,"abstract":"Knot Floer homology is an invariant for knots discovered by the authors and, independently, Jacob Rasmussen. The discovery of this invariant grew naturally out of studying how a certain three-manifold invariant, Heegaard Floer homology, changes as the three-manifold undergoes Dehn surgery along a knot. Since its original definition, thanks to the contributions of many researchers, knot Floer homology has emerged as a useful tool for studying knots in its own right. We give here a few selected highlights of this theory, and then move on to some new algebraic developments in the computation of knot Floer homology.","PeriodicalId":384712,"journal":{"name":"Proceedings of Symposia in Pure\n Mathematics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An overview of knot Floer homology\",\"authors\":\"P. Ozsváth, Z. Szabó\",\"doi\":\"10.1090/PSPUM/099/01742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knot Floer homology is an invariant for knots discovered by the authors and, independently, Jacob Rasmussen. The discovery of this invariant grew naturally out of studying how a certain three-manifold invariant, Heegaard Floer homology, changes as the three-manifold undergoes Dehn surgery along a knot. Since its original definition, thanks to the contributions of many researchers, knot Floer homology has emerged as a useful tool for studying knots in its own right. We give here a few selected highlights of this theory, and then move on to some new algebraic developments in the computation of knot Floer homology.\",\"PeriodicalId\":384712,\"journal\":{\"name\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Symposia in Pure\\n Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/PSPUM/099/01742\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Symposia in Pure\n Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/PSPUM/099/01742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Knot Floer homology is an invariant for knots discovered by the authors and, independently, Jacob Rasmussen. The discovery of this invariant grew naturally out of studying how a certain three-manifold invariant, Heegaard Floer homology, changes as the three-manifold undergoes Dehn surgery along a knot. Since its original definition, thanks to the contributions of many researchers, knot Floer homology has emerged as a useful tool for studying knots in its own right. We give here a few selected highlights of this theory, and then move on to some new algebraic developments in the computation of knot Floer homology.