自组织麦克风去噪的空间多通道线性预测

Shahab Pasha, C. Ritz, Y. Zou
{"title":"自组织麦克风去噪的空间多通道线性预测","authors":"Shahab Pasha, C. Ritz, Y. Zou","doi":"10.1109/APSIPA.2017.8282306","DOIUrl":null,"url":null,"abstract":"A spatially modified multi-channel linear prediction analysis is proposed and tested for the dereverberation of ad-hoc microphone arrays. The proposed spatial multi-channel linear prediction takes into account the estimated spatial distances between each microphone and the source and is applied for the short-term dereverberation (pre-whitening). The delayed linear prediction is then applied for the suppression of the late reverberation. Results suggest that the proposed method outperforms the standard linear prediction based methods when applied to the ad-hoc microphones. It is also concluded that the kurtosis of the linear prediction residual signal is a reliable distance feature when the microphone gains are inconsistent and the sources energy levels vary.","PeriodicalId":142091,"journal":{"name":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Spatial multi-channel linear prediction for dereverberation of ad-hoc microphones\",\"authors\":\"Shahab Pasha, C. Ritz, Y. Zou\",\"doi\":\"10.1109/APSIPA.2017.8282306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A spatially modified multi-channel linear prediction analysis is proposed and tested for the dereverberation of ad-hoc microphone arrays. The proposed spatial multi-channel linear prediction takes into account the estimated spatial distances between each microphone and the source and is applied for the short-term dereverberation (pre-whitening). The delayed linear prediction is then applied for the suppression of the late reverberation. Results suggest that the proposed method outperforms the standard linear prediction based methods when applied to the ad-hoc microphones. It is also concluded that the kurtosis of the linear prediction residual signal is a reliable distance feature when the microphone gains are inconsistent and the sources energy levels vary.\",\"PeriodicalId\":142091,\"journal\":{\"name\":\"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2017.8282306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2017.8282306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种空间修正的多通道线性预测分析方法,并对该方法进行了测试。提出的空间多通道线性预测考虑了每个传声器与源之间的估计空间距离,并应用于短期去混响(预白化)。然后将延迟线性预测应用于后期混响的抑制。结果表明,该方法在应用于自组网传声器时优于基于线性预测的标准方法。在传声器增益不一致和源能级变化的情况下,线性预测残差信号的峰度是一个可靠的距离特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial multi-channel linear prediction for dereverberation of ad-hoc microphones
A spatially modified multi-channel linear prediction analysis is proposed and tested for the dereverberation of ad-hoc microphone arrays. The proposed spatial multi-channel linear prediction takes into account the estimated spatial distances between each microphone and the source and is applied for the short-term dereverberation (pre-whitening). The delayed linear prediction is then applied for the suppression of the late reverberation. Results suggest that the proposed method outperforms the standard linear prediction based methods when applied to the ad-hoc microphones. It is also concluded that the kurtosis of the linear prediction residual signal is a reliable distance feature when the microphone gains are inconsistent and the sources energy levels vary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信