在地图预测勘探规划中理解贪婪

Ludvig Ericson, Daniel Duberg, P. Jensfelt
{"title":"在地图预测勘探规划中理解贪婪","authors":"Ludvig Ericson, Daniel Duberg, P. Jensfelt","doi":"10.1109/ecmr50962.2021.9568793","DOIUrl":null,"url":null,"abstract":"In map-predictive exploration planning, the aim is to exploit a-priori map information to improve planning for exploration in otherwise unknown environments. The use of map predictions in exploration planning leads to exacerbated greediness, as map predictions allow the planner to defer exploring parts of the environment that have low value, e.g., unfinished corners. This behavior is undesirable, as it leaves holes in the explored space by design. To this end, we propose a scoring function based on inverse covisibility that rewards visiting these low-value parts, resulting in a more cohesive exploration process, and preventing excessive greediness in a map-predictive setting. We examine the behavior of a non-greedy map-predictive planner in a bare-bones simulator, and answer two principal questions: a) how far beyond explored space should a map predictor predict to aid exploration, i.e., is more better; and b) does shortest-path search as the basis for planning, a popular choice, cause greediness. Finally, we show that by thresholding covisibility, the user can trade-off greediness for improved early exploration performance.","PeriodicalId":200521,"journal":{"name":"2021 European Conference on Mobile Robots (ECMR)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Understanding Greediness in Map-Predictive Exploration Planning\",\"authors\":\"Ludvig Ericson, Daniel Duberg, P. Jensfelt\",\"doi\":\"10.1109/ecmr50962.2021.9568793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In map-predictive exploration planning, the aim is to exploit a-priori map information to improve planning for exploration in otherwise unknown environments. The use of map predictions in exploration planning leads to exacerbated greediness, as map predictions allow the planner to defer exploring parts of the environment that have low value, e.g., unfinished corners. This behavior is undesirable, as it leaves holes in the explored space by design. To this end, we propose a scoring function based on inverse covisibility that rewards visiting these low-value parts, resulting in a more cohesive exploration process, and preventing excessive greediness in a map-predictive setting. We examine the behavior of a non-greedy map-predictive planner in a bare-bones simulator, and answer two principal questions: a) how far beyond explored space should a map predictor predict to aid exploration, i.e., is more better; and b) does shortest-path search as the basis for planning, a popular choice, cause greediness. Finally, we show that by thresholding covisibility, the user can trade-off greediness for improved early exploration performance.\",\"PeriodicalId\":200521,\"journal\":{\"name\":\"2021 European Conference on Mobile Robots (ECMR)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ecmr50962.2021.9568793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ecmr50962.2021.9568793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在地图预测勘探规划中,目的是利用先验的地图信息来改进未知环境下的勘探规划。在勘探规划中使用地图预测会导致贪婪加剧,因为地图预测允许规划者推迟对环境中低价值部分的探索,例如未完成的角落。这种行为是不可取的,因为它在设计的探索空间中留下了漏洞。为此,我们提出了一个基于逆共可见度的评分函数,奖励访问这些低价值部分,从而产生更有凝聚力的探索过程,并防止在地图预测设置中过度贪婪。我们在一个简单的模拟器中检查了非贪婪地图预测计划器的行为,并回答了两个主要问题:a)地图预测器应该预测到探索空间的多远,以帮助探索,即更好;b)作为规划基础的最短路径搜索(一种普遍的选择)是否会导致贪婪?最后,我们表明,通过阈值化共同可见性,用户可以权衡贪婪性以提高早期勘探性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding Greediness in Map-Predictive Exploration Planning
In map-predictive exploration planning, the aim is to exploit a-priori map information to improve planning for exploration in otherwise unknown environments. The use of map predictions in exploration planning leads to exacerbated greediness, as map predictions allow the planner to defer exploring parts of the environment that have low value, e.g., unfinished corners. This behavior is undesirable, as it leaves holes in the explored space by design. To this end, we propose a scoring function based on inverse covisibility that rewards visiting these low-value parts, resulting in a more cohesive exploration process, and preventing excessive greediness in a map-predictive setting. We examine the behavior of a non-greedy map-predictive planner in a bare-bones simulator, and answer two principal questions: a) how far beyond explored space should a map predictor predict to aid exploration, i.e., is more better; and b) does shortest-path search as the basis for planning, a popular choice, cause greediness. Finally, we show that by thresholding covisibility, the user can trade-off greediness for improved early exploration performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信