基于卷积神经网络的图像质量预测器

Wei Yang, Yu-Cheng Feng, Tyng-Yeu Liang
{"title":"基于卷积神经网络的图像质量预测器","authors":"Wei Yang, Yu-Cheng Feng, Tyng-Yeu Liang","doi":"10.1109/ISPACS51563.2021.9651075","DOIUrl":null,"url":null,"abstract":"Image quality assessment is an essential issue for image encoding, monitoring, and pricing. We developed an image quality predictor by using convolution neural networks (CNN) in this paper to address this issue. This predictor consists of a distortion classifier and five scorers for predicting the quality of images with different distortions. Different from related work, the proposed predictor uses the Laplacian filter in data preprocessing to increase the gradient variances caused by different distortions and replaces the flatten layer with the global average pooling layer in CNN for reducing the amount of data computation. Our experimental results have shown that the proposed predictor can provide higher prediction accuracy and spend less time on image quality assessment than related work.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Image Quality Predictor based on Convolution Neural Networks\",\"authors\":\"Wei Yang, Yu-Cheng Feng, Tyng-Yeu Liang\",\"doi\":\"10.1109/ISPACS51563.2021.9651075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image quality assessment is an essential issue for image encoding, monitoring, and pricing. We developed an image quality predictor by using convolution neural networks (CNN) in this paper to address this issue. This predictor consists of a distortion classifier and five scorers for predicting the quality of images with different distortions. Different from related work, the proposed predictor uses the Laplacian filter in data preprocessing to increase the gradient variances caused by different distortions and replaces the flatten layer with the global average pooling layer in CNN for reducing the amount of data computation. Our experimental results have shown that the proposed predictor can provide higher prediction accuracy and spend less time on image quality assessment than related work.\",\"PeriodicalId\":359822,\"journal\":{\"name\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS51563.2021.9651075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9651075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

图像质量评估是图像编码、监控和定价的关键问题。本文利用卷积神经网络(CNN)开发了一个图像质量预测器来解决这个问题。该预测器由一个失真分类器和五个评分器组成,用于预测具有不同失真的图像的质量。与相关工作不同的是,本文提出的预测器在数据预处理中使用拉普拉斯滤波来增加不同失真引起的梯度方差,并用CNN中的全局平均池化层代替平坦层,以减少数据计算量。实验结果表明,本文提出的预测器可以提供更高的预测精度,并且在图像质量评估上花费的时间比相关工作少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Image Quality Predictor based on Convolution Neural Networks
Image quality assessment is an essential issue for image encoding, monitoring, and pricing. We developed an image quality predictor by using convolution neural networks (CNN) in this paper to address this issue. This predictor consists of a distortion classifier and five scorers for predicting the quality of images with different distortions. Different from related work, the proposed predictor uses the Laplacian filter in data preprocessing to increase the gradient variances caused by different distortions and replaces the flatten layer with the global average pooling layer in CNN for reducing the amount of data computation. Our experimental results have shown that the proposed predictor can provide higher prediction accuracy and spend less time on image quality assessment than related work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信