异构信息网络中元路径与元图的联合嵌入

Lichao Sun, Lifang He, Zhipeng Huang, Bokai Cao, Congying Xia, Xiaokai Wei, Philip S. Yu
{"title":"异构信息网络中元路径与元图的联合嵌入","authors":"Lichao Sun, Lifang He, Zhipeng Huang, Bokai Cao, Congying Xia, Xiaokai Wei, Philip S. Yu","doi":"10.1109/ICBK.2018.00025","DOIUrl":null,"url":null,"abstract":"Meta-graph is currently the most powerful tool for similarity search on heterogeneous information networks, where a meta-graph is a composition of meta-paths that captures the complex structural information. However, current relevance computing based on meta-graph only considers the complex structural information, but ignores its embedded meta-paths information. To address this problem, we proposeMEta-GrAph-based network embedding models, called MEGA and MEGA++, respectively. The MEGA model uses normalized relevance or similarity measures that are derived from a meta-graph and its embedded meta-paths between nodes simultaneously, and then leverages tensor decomposition method to perform node embedding. The MEGA++ further facilitates the use of coupled tensor-matrix decomposition method to obtain a joint embedding for nodes, which simultaneously considers the hidden relations of all meta information of a meta-graph. Extensive experiments on two real datasets demonstrate that MEGA and MEGA++ are more effective than state-of-the-art approaches.","PeriodicalId":144958,"journal":{"name":"2018 IEEE International Conference on Big Knowledge (ICBK)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Joint Embedding of Meta-Path and Meta-Graph for Heterogeneous Information Networks\",\"authors\":\"Lichao Sun, Lifang He, Zhipeng Huang, Bokai Cao, Congying Xia, Xiaokai Wei, Philip S. Yu\",\"doi\":\"10.1109/ICBK.2018.00025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Meta-graph is currently the most powerful tool for similarity search on heterogeneous information networks, where a meta-graph is a composition of meta-paths that captures the complex structural information. However, current relevance computing based on meta-graph only considers the complex structural information, but ignores its embedded meta-paths information. To address this problem, we proposeMEta-GrAph-based network embedding models, called MEGA and MEGA++, respectively. The MEGA model uses normalized relevance or similarity measures that are derived from a meta-graph and its embedded meta-paths between nodes simultaneously, and then leverages tensor decomposition method to perform node embedding. The MEGA++ further facilitates the use of coupled tensor-matrix decomposition method to obtain a joint embedding for nodes, which simultaneously considers the hidden relations of all meta information of a meta-graph. Extensive experiments on two real datasets demonstrate that MEGA and MEGA++ are more effective than state-of-the-art approaches.\",\"PeriodicalId\":144958,\"journal\":{\"name\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Big Knowledge (ICBK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBK.2018.00025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Big Knowledge (ICBK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBK.2018.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

元图是目前异构信息网络中最强大的相似性搜索工具,其中元图是捕获复杂结构信息的元路径的组合。然而,目前基于元图的关联计算只考虑了复杂的结构信息,而忽略了其嵌入的元路径信息。为了解决这个问题,我们提出了基于eta - graph的网络嵌入模型,分别称为MEGA和MEGA++。MEGA模型使用标准化的相关性或相似性度量,这些度量来源于元图及其节点之间嵌入的元路径,然后利用张量分解方法进行节点嵌入。mega++进一步促进了使用耦合张量-矩阵分解方法获得节点的联合嵌入,该方法同时考虑了元图中所有元信息的隐藏关系。在两个真实数据集上进行的大量实验表明,MEGA和MEGA++比最先进的方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Joint Embedding of Meta-Path and Meta-Graph for Heterogeneous Information Networks
Meta-graph is currently the most powerful tool for similarity search on heterogeneous information networks, where a meta-graph is a composition of meta-paths that captures the complex structural information. However, current relevance computing based on meta-graph only considers the complex structural information, but ignores its embedded meta-paths information. To address this problem, we proposeMEta-GrAph-based network embedding models, called MEGA and MEGA++, respectively. The MEGA model uses normalized relevance or similarity measures that are derived from a meta-graph and its embedded meta-paths between nodes simultaneously, and then leverages tensor decomposition method to perform node embedding. The MEGA++ further facilitates the use of coupled tensor-matrix decomposition method to obtain a joint embedding for nodes, which simultaneously considers the hidden relations of all meta information of a meta-graph. Extensive experiments on two real datasets demonstrate that MEGA and MEGA++ are more effective than state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信