Fidas

Jian Chen, Xiaoyu Zhang, Tao Wang, Ying Zhang, Tao Chen, Jiajun Chen, Mingxu Xie, Qiang Liu
{"title":"Fidas","authors":"Jian Chen, Xiaoyu Zhang, Tao Wang, Ying Zhang, Tao Chen, Jiajun Chen, Mingxu Xie, Qiang Liu","doi":"10.1145/3470496.3533043","DOIUrl":null,"url":null,"abstract":"Network intrusion detection systems (IDS) are crucial for secure cloud computing, but they are also severely constrained by CPU computation capacity as the network bandwidth increases. Therefore, hardware offloading is essential for the IDS servers to support the ever-growing throughput demand for packet processing. Based on the experience of large-scale IDS deployment, we find the existing hardware offloading solutions have fundamental limitations that prevent them from being massively deployed in the production environment. In this paper, we present Fidas, an FPGA-based intrusion detection offload system that avoids the limitations of the existing hardware solutions by comprehensively offloading the primary NIC, rule pattern matching, and traffic flow rate classification. The pattern matching module in Fidas uses a multi-level filter-based approach for efficient regex processing, and the flow rate classification module employs a novel dual-stack memory scheme to identify the hot flows under volumetric attacks. Our evaluation shows that Fidas achieves the state-of-the-art throughput in pattern matching and flow rate classification while freeing up processors for other security-related functionalities. Fidas is deployed in the production data center and has been battle-tested for its performance, cost-effectiveness, and DevOps agility.","PeriodicalId":337932,"journal":{"name":"Proceedings of the 49th Annual International Symposium on Computer Architecture","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Fidas\",\"authors\":\"Jian Chen, Xiaoyu Zhang, Tao Wang, Ying Zhang, Tao Chen, Jiajun Chen, Mingxu Xie, Qiang Liu\",\"doi\":\"10.1145/3470496.3533043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network intrusion detection systems (IDS) are crucial for secure cloud computing, but they are also severely constrained by CPU computation capacity as the network bandwidth increases. Therefore, hardware offloading is essential for the IDS servers to support the ever-growing throughput demand for packet processing. Based on the experience of large-scale IDS deployment, we find the existing hardware offloading solutions have fundamental limitations that prevent them from being massively deployed in the production environment. In this paper, we present Fidas, an FPGA-based intrusion detection offload system that avoids the limitations of the existing hardware solutions by comprehensively offloading the primary NIC, rule pattern matching, and traffic flow rate classification. The pattern matching module in Fidas uses a multi-level filter-based approach for efficient regex processing, and the flow rate classification module employs a novel dual-stack memory scheme to identify the hot flows under volumetric attacks. Our evaluation shows that Fidas achieves the state-of-the-art throughput in pattern matching and flow rate classification while freeing up processors for other security-related functionalities. Fidas is deployed in the production data center and has been battle-tested for its performance, cost-effectiveness, and DevOps agility.\",\"PeriodicalId\":337932,\"journal\":{\"name\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 49th Annual International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3470496.3533043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 49th Annual International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3470496.3533043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fidas
Network intrusion detection systems (IDS) are crucial for secure cloud computing, but they are also severely constrained by CPU computation capacity as the network bandwidth increases. Therefore, hardware offloading is essential for the IDS servers to support the ever-growing throughput demand for packet processing. Based on the experience of large-scale IDS deployment, we find the existing hardware offloading solutions have fundamental limitations that prevent them from being massively deployed in the production environment. In this paper, we present Fidas, an FPGA-based intrusion detection offload system that avoids the limitations of the existing hardware solutions by comprehensively offloading the primary NIC, rule pattern matching, and traffic flow rate classification. The pattern matching module in Fidas uses a multi-level filter-based approach for efficient regex processing, and the flow rate classification module employs a novel dual-stack memory scheme to identify the hot flows under volumetric attacks. Our evaluation shows that Fidas achieves the state-of-the-art throughput in pattern matching and flow rate classification while freeing up processors for other security-related functionalities. Fidas is deployed in the production data center and has been battle-tested for its performance, cost-effectiveness, and DevOps agility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信