S. Mukundan, H. Dhulipati, G. Feng, J. Tjong, N. Kar
{"title":"基于绕线函数的新型奇槽星三角绕线构型空间谐波化建模与分析","authors":"S. Mukundan, H. Dhulipati, G. Feng, J. Tjong, N. Kar","doi":"10.1109/IEMDC.2019.8785395","DOIUrl":null,"url":null,"abstract":"Existing literature on 3-phase combined star-delta winding topologies only focuses on even slot numbers or conventional multiples of 6, since they emulate a 6-phase configuration with a phase difference of 30° between the star and delta connected sets. Contrarily, if a turns ratio of √3 can be achieved with proper coil and turns distribution, unconventional odd slot numbers and non-multiples of 6 can be implemented resulting in various possible design solutions with minimum spatial harmonic contents. Therefore, this paper focuses on modeling and analysis of a novel star-delta winding configuration using unconventional odd slot numbers for fractional-slot wound machines towards maximum torque density and reduced space harmonic content. Initially, a generalized analytical model using winding function theory for any slot-pole combination is presented. Furthermore, a comprehensive comparative analysis of a novel odd slot-pole combination and a conventional topology is presented in terms of spatial harmonic contents, saliency, torque density, torque ripple, rated machine efficiency and overall operating speed range.","PeriodicalId":378634,"journal":{"name":"2019 IEEE International Electric Machines & Drives Conference (IEMDC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modeling and Analysis of Novel Star-Delta Winding Configuration with Odd Slot Numbers for Reduced Space Harmonics Using Winding Function\",\"authors\":\"S. Mukundan, H. Dhulipati, G. Feng, J. Tjong, N. Kar\",\"doi\":\"10.1109/IEMDC.2019.8785395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing literature on 3-phase combined star-delta winding topologies only focuses on even slot numbers or conventional multiples of 6, since they emulate a 6-phase configuration with a phase difference of 30° between the star and delta connected sets. Contrarily, if a turns ratio of √3 can be achieved with proper coil and turns distribution, unconventional odd slot numbers and non-multiples of 6 can be implemented resulting in various possible design solutions with minimum spatial harmonic contents. Therefore, this paper focuses on modeling and analysis of a novel star-delta winding configuration using unconventional odd slot numbers for fractional-slot wound machines towards maximum torque density and reduced space harmonic content. Initially, a generalized analytical model using winding function theory for any slot-pole combination is presented. Furthermore, a comprehensive comparative analysis of a novel odd slot-pole combination and a conventional topology is presented in terms of spatial harmonic contents, saliency, torque density, torque ripple, rated machine efficiency and overall operating speed range.\",\"PeriodicalId\":378634,\"journal\":{\"name\":\"2019 IEEE International Electric Machines & Drives Conference (IEMDC)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Electric Machines & Drives Conference (IEMDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMDC.2019.8785395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Electric Machines & Drives Conference (IEMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMDC.2019.8785395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling and Analysis of Novel Star-Delta Winding Configuration with Odd Slot Numbers for Reduced Space Harmonics Using Winding Function
Existing literature on 3-phase combined star-delta winding topologies only focuses on even slot numbers or conventional multiples of 6, since they emulate a 6-phase configuration with a phase difference of 30° between the star and delta connected sets. Contrarily, if a turns ratio of √3 can be achieved with proper coil and turns distribution, unconventional odd slot numbers and non-multiples of 6 can be implemented resulting in various possible design solutions with minimum spatial harmonic contents. Therefore, this paper focuses on modeling and analysis of a novel star-delta winding configuration using unconventional odd slot numbers for fractional-slot wound machines towards maximum torque density and reduced space harmonic content. Initially, a generalized analytical model using winding function theory for any slot-pole combination is presented. Furthermore, a comprehensive comparative analysis of a novel odd slot-pole combination and a conventional topology is presented in terms of spatial harmonic contents, saliency, torque density, torque ripple, rated machine efficiency and overall operating speed range.