{"title":"利用进程生命周期分布实现动态负载平衡","authors":"Mor Harchol-Balter, A. Downey","doi":"10.1145/224056.225838","DOIUrl":null,"url":null,"abstract":"We measure the distribution of lifetimes for UNIX processes and propose a functional form that fits this distribution well. We use this functional form to derive a policy for preemptive migration, and then use a trace-driven simulator to compare our proposed policy with other preemptive migration policies, and with a non-preemptive load-balancing strategy. We find that, contrary to previous reports, the performance benefits of preemptive migration are significantly greater than those of non-preemptive migration, even when the memory-transfer cost is high. Using a model of migration costs representative of current systems, we find that preemptive migration reduces the mean delay (queueing and migration) by 35% -- 50%, compared to non-preemptive migration.","PeriodicalId":168455,"journal":{"name":"Proceedings of the fifteenth ACM symposium on Operating systems principles","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"397","resultStr":"{\"title\":\"Exploiting process lifetime distributions for dynamic load balancing\",\"authors\":\"Mor Harchol-Balter, A. Downey\",\"doi\":\"10.1145/224056.225838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We measure the distribution of lifetimes for UNIX processes and propose a functional form that fits this distribution well. We use this functional form to derive a policy for preemptive migration, and then use a trace-driven simulator to compare our proposed policy with other preemptive migration policies, and with a non-preemptive load-balancing strategy. We find that, contrary to previous reports, the performance benefits of preemptive migration are significantly greater than those of non-preemptive migration, even when the memory-transfer cost is high. Using a model of migration costs representative of current systems, we find that preemptive migration reduces the mean delay (queueing and migration) by 35% -- 50%, compared to non-preemptive migration.\",\"PeriodicalId\":168455,\"journal\":{\"name\":\"Proceedings of the fifteenth ACM symposium on Operating systems principles\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"397\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the fifteenth ACM symposium on Operating systems principles\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/224056.225838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the fifteenth ACM symposium on Operating systems principles","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/224056.225838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploiting process lifetime distributions for dynamic load balancing
We measure the distribution of lifetimes for UNIX processes and propose a functional form that fits this distribution well. We use this functional form to derive a policy for preemptive migration, and then use a trace-driven simulator to compare our proposed policy with other preemptive migration policies, and with a non-preemptive load-balancing strategy. We find that, contrary to previous reports, the performance benefits of preemptive migration are significantly greater than those of non-preemptive migration, even when the memory-transfer cost is high. Using a model of migration costs representative of current systems, we find that preemptive migration reduces the mean delay (queueing and migration) by 35% -- 50%, compared to non-preemptive migration.