用于广域存储的低密度奇偶校验擦除码的实际分析

J. Plank, M. Thomason
{"title":"用于广域存储的低密度奇偶校验擦除码的实际分析","authors":"J. Plank, M. Thomason","doi":"10.1109/DSN.2004.1311882","DOIUrl":null,"url":null,"abstract":"As peer-to-peer and widely distributed storage systems proliferate, the need to perform efficient erasure coding, instead of replication, is crucial to performance and efficiency. Low-density parity-check (LDPC) codes have arisen as alternatives to standard erasure codes, such as Reed-Solomon codes, trading off vastly improved decoding performance for inefficiencies in the amount of data that must be acquired to perform decoding. The scores of papers written on LDPC codes typically analyze their collective and asymptotic behavior. Unfortunately, their practical application requires the generation and analysis of individual codes for finite systems. This paper attempts to illuminate the practical considerations of LDPC codes for peer-to-peer and distributed storage systems. The three main types of LDPC codes are detailed, and a huge variety of codes are generated, then analyzed using simulation. This analysis focuses on the performance of individual codes for finite systems, and addresses several important heretofore unanswered questions about employing LDPC codes in real-world systems.","PeriodicalId":436323,"journal":{"name":"International Conference on Dependable Systems and Networks, 2004","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":"{\"title\":\"A practical analysis of low-density parity-check erasure codes for wide-area storage applications\",\"authors\":\"J. Plank, M. Thomason\",\"doi\":\"10.1109/DSN.2004.1311882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As peer-to-peer and widely distributed storage systems proliferate, the need to perform efficient erasure coding, instead of replication, is crucial to performance and efficiency. Low-density parity-check (LDPC) codes have arisen as alternatives to standard erasure codes, such as Reed-Solomon codes, trading off vastly improved decoding performance for inefficiencies in the amount of data that must be acquired to perform decoding. The scores of papers written on LDPC codes typically analyze their collective and asymptotic behavior. Unfortunately, their practical application requires the generation and analysis of individual codes for finite systems. This paper attempts to illuminate the practical considerations of LDPC codes for peer-to-peer and distributed storage systems. The three main types of LDPC codes are detailed, and a huge variety of codes are generated, then analyzed using simulation. This analysis focuses on the performance of individual codes for finite systems, and addresses several important heretofore unanswered questions about employing LDPC codes in real-world systems.\",\"PeriodicalId\":436323,\"journal\":{\"name\":\"International Conference on Dependable Systems and Networks, 2004\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"123\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Dependable Systems and Networks, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN.2004.1311882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Dependable Systems and Networks, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2004.1311882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 123

摘要

随着点对点和广泛分布的存储系统的激增,需要执行高效的擦除编码,而不是复制,这对性能和效率至关重要。低密度奇偶校验码(LDPC)已经成为标准擦除码(如Reed-Solomon码)的替代方案,它极大地提高了解码性能,但却降低了解码所需数据量的效率。关于LDPC码的论文通常分析它们的集体行为和渐近行为。不幸的是,它们的实际应用需要为有限系统生成和分析单个代码。本文试图阐明LDPC码在点对点和分布式存储系统中的实际考虑。详细介绍了三种主要的LDPC码,生成了种类繁多的LDPC码,并进行了仿真分析。本分析侧重于有限系统中单个代码的性能,并解决了在实际系统中使用LDPC代码的几个重要的迄今未回答的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A practical analysis of low-density parity-check erasure codes for wide-area storage applications
As peer-to-peer and widely distributed storage systems proliferate, the need to perform efficient erasure coding, instead of replication, is crucial to performance and efficiency. Low-density parity-check (LDPC) codes have arisen as alternatives to standard erasure codes, such as Reed-Solomon codes, trading off vastly improved decoding performance for inefficiencies in the amount of data that must be acquired to perform decoding. The scores of papers written on LDPC codes typically analyze their collective and asymptotic behavior. Unfortunately, their practical application requires the generation and analysis of individual codes for finite systems. This paper attempts to illuminate the practical considerations of LDPC codes for peer-to-peer and distributed storage systems. The three main types of LDPC codes are detailed, and a huge variety of codes are generated, then analyzed using simulation. This analysis focuses on the performance of individual codes for finite systems, and addresses several important heretofore unanswered questions about employing LDPC codes in real-world systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信