基于多项式矩阵特征值分解的球形传声器阵列源分离

Vincent W. Neo, C. Evers, P. Naylor
{"title":"基于多项式矩阵特征值分解的球形传声器阵列源分离","authors":"Vincent W. Neo, C. Evers, P. Naylor","doi":"10.1109/WASPAA52581.2021.9632722","DOIUrl":null,"url":null,"abstract":"Audio source separation is essential for many applications such as hearing aids, telecommunications, and robot audition. Subspace decomposition approaches using polynomial matrix eigenvalue decomposition (PEVD) algorithms applied to the microphone signals, or lower-dimension eigenbeams for spherical microphone arrays, are effective for speech enhancement. In this work, we extend the work from speech enhancement and propose a PEVD subspace algorithm that uses eigenbeams for source separation. The proposed PEVD-based source separation approach performs comparably with state-of-the-art algorithms, such as those based on independent component analysis (ICA) and multi-channel non-negative matrix factorization (MNMF). Informal listening examples also indicate that our method does not introduce any audible artifacts.","PeriodicalId":429900,"journal":{"name":"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Polynomial Matrix Eigenvalue Decomposition-Based Source Separation Using Informed Spherical Microphone Arrays\",\"authors\":\"Vincent W. Neo, C. Evers, P. Naylor\",\"doi\":\"10.1109/WASPAA52581.2021.9632722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Audio source separation is essential for many applications such as hearing aids, telecommunications, and robot audition. Subspace decomposition approaches using polynomial matrix eigenvalue decomposition (PEVD) algorithms applied to the microphone signals, or lower-dimension eigenbeams for spherical microphone arrays, are effective for speech enhancement. In this work, we extend the work from speech enhancement and propose a PEVD subspace algorithm that uses eigenbeams for source separation. The proposed PEVD-based source separation approach performs comparably with state-of-the-art algorithms, such as those based on independent component analysis (ICA) and multi-channel non-negative matrix factorization (MNMF). Informal listening examples also indicate that our method does not introduce any audible artifacts.\",\"PeriodicalId\":429900,\"journal\":{\"name\":\"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WASPAA52581.2021.9632722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA52581.2021.9632722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

音频源分离对于助听器、电信和机器人试听等许多应用都是必不可少的。使用多项式矩阵特征值分解(PEVD)算法的子空间分解方法应用于麦克风信号,或者用于球形麦克风阵列的低维特征波束,都是有效的语音增强方法。在这项工作中,我们扩展了语音增强的工作,并提出了一种使用特征束进行源分离的PEVD子空间算法。所提出的基于pevd的源分离方法与基于独立分量分析(ICA)和多通道非负矩阵分解(MNMF)等最新算法的性能相当。非正式听力的例子也表明我们的方法不引入任何听觉伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial Matrix Eigenvalue Decomposition-Based Source Separation Using Informed Spherical Microphone Arrays
Audio source separation is essential for many applications such as hearing aids, telecommunications, and robot audition. Subspace decomposition approaches using polynomial matrix eigenvalue decomposition (PEVD) algorithms applied to the microphone signals, or lower-dimension eigenbeams for spherical microphone arrays, are effective for speech enhancement. In this work, we extend the work from speech enhancement and propose a PEVD subspace algorithm that uses eigenbeams for source separation. The proposed PEVD-based source separation approach performs comparably with state-of-the-art algorithms, such as those based on independent component analysis (ICA) and multi-channel non-negative matrix factorization (MNMF). Informal listening examples also indicate that our method does not introduce any audible artifacts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信