强迫跨膜电压缓慢下降:心电图成像的时间正则化

S. Schuler, A. Loewe, O. Dössel
{"title":"强迫跨膜电压缓慢下降:心电图成像的时间正则化","authors":"S. Schuler, A. Loewe, O. Dössel","doi":"10.22489/CinC.2018.324","DOIUrl":null,"url":null,"abstract":"ECG imaging aims to reconstruct the cardiac electrical activity from non-invasive measurements of body surface potentials (BSP) by finding unique and physiologically meaningful solutions to the inverse problem of electrocardiography. This can be accomplished using regularization, which reduces the space of admissible solutions by demanding solution properties that are already known beforehand. Messnarz et. al. proposed a regularization scheme that requires transmembrane voltages (TMV) to not decrease over time. We suggest a generalization of this method that forces TMVs to decrease only slowly and as a result can also be applied to irregular cardiac activity. We first develop the method using a simplified spherical geometry and then show its benefit for imaging fibrillatory activity on a realistic geometry of the atria.","PeriodicalId":215521,"journal":{"name":"2018 Computing in Cardiology Conference (CinC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forcing Transmembrane Voltages to Decrease Slowly: A Temporal Regularization for ECG Imaging\",\"authors\":\"S. Schuler, A. Loewe, O. Dössel\",\"doi\":\"10.22489/CinC.2018.324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ECG imaging aims to reconstruct the cardiac electrical activity from non-invasive measurements of body surface potentials (BSP) by finding unique and physiologically meaningful solutions to the inverse problem of electrocardiography. This can be accomplished using regularization, which reduces the space of admissible solutions by demanding solution properties that are already known beforehand. Messnarz et. al. proposed a regularization scheme that requires transmembrane voltages (TMV) to not decrease over time. We suggest a generalization of this method that forces TMVs to decrease only slowly and as a result can also be applied to irregular cardiac activity. We first develop the method using a simplified spherical geometry and then show its benefit for imaging fibrillatory activity on a realistic geometry of the atria.\",\"PeriodicalId\":215521,\"journal\":{\"name\":\"2018 Computing in Cardiology Conference (CinC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Computing in Cardiology Conference (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2018.324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2018.324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心电图成像旨在通过寻找独特的、生理上有意义的解决方案来解决心电图逆问题,从无创体表电位(BSP)测量中重建心脏电活动。这可以使用正则化来实现,它通过要求事先已知的解的性质来减少可接受解的空间。Messnarz等人提出了一种要求跨膜电压(TMV)不随时间降低的正则化方案。我们建议推广这种方法,迫使TMVs只缓慢下降,因此也可以应用于不规则的心脏活动。我们首先使用简化的球形几何结构开发该方法,然后展示其在真实心房几何结构上成像纤颤活动的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forcing Transmembrane Voltages to Decrease Slowly: A Temporal Regularization for ECG Imaging
ECG imaging aims to reconstruct the cardiac electrical activity from non-invasive measurements of body surface potentials (BSP) by finding unique and physiologically meaningful solutions to the inverse problem of electrocardiography. This can be accomplished using regularization, which reduces the space of admissible solutions by demanding solution properties that are already known beforehand. Messnarz et. al. proposed a regularization scheme that requires transmembrane voltages (TMV) to not decrease over time. We suggest a generalization of this method that forces TMVs to decrease only slowly and as a result can also be applied to irregular cardiac activity. We first develop the method using a simplified spherical geometry and then show its benefit for imaging fibrillatory activity on a realistic geometry of the atria.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信