J. Ordonez-Miranda, M. A. Ras, B. Wunderle, S. Volz
{"title":"银颗粒复合材料导热系数的建模与测量","authors":"J. Ordonez-Miranda, M. A. Ras, B. Wunderle, S. Volz","doi":"10.1109/THERMINIC.2016.7749038","DOIUrl":null,"url":null,"abstract":"The effective thermal conductivity of composites made up of silver micro-particles embedded in a resin matrix is modelled and measured. This is done for spherical and flake-like particles to analyse the effects of the particles geometry and concentration on the composite thermal performance. It is experimentally found that spherical particles yield a higher thermal conductivity than the one given by flakes, such that it takes the value of 16 Wm-1 K-1 for a 50% volume fraction of particles. Furthermore, this behaviour is well described by a simple and analytical model, which takes into account the particle-particle interactions through a crowding factor. The obtained results could be useful to optimize the design and manufacture of composites with metallic particles.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Modelling and measurement of the thermal conductivity of composites with silver particles\",\"authors\":\"J. Ordonez-Miranda, M. A. Ras, B. Wunderle, S. Volz\",\"doi\":\"10.1109/THERMINIC.2016.7749038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The effective thermal conductivity of composites made up of silver micro-particles embedded in a resin matrix is modelled and measured. This is done for spherical and flake-like particles to analyse the effects of the particles geometry and concentration on the composite thermal performance. It is experimentally found that spherical particles yield a higher thermal conductivity than the one given by flakes, such that it takes the value of 16 Wm-1 K-1 for a 50% volume fraction of particles. Furthermore, this behaviour is well described by a simple and analytical model, which takes into account the particle-particle interactions through a crowding factor. The obtained results could be useful to optimize the design and manufacture of composites with metallic particles.\",\"PeriodicalId\":143150,\"journal\":{\"name\":\"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/THERMINIC.2016.7749038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THERMINIC.2016.7749038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling and measurement of the thermal conductivity of composites with silver particles
The effective thermal conductivity of composites made up of silver micro-particles embedded in a resin matrix is modelled and measured. This is done for spherical and flake-like particles to analyse the effects of the particles geometry and concentration on the composite thermal performance. It is experimentally found that spherical particles yield a higher thermal conductivity than the one given by flakes, such that it takes the value of 16 Wm-1 K-1 for a 50% volume fraction of particles. Furthermore, this behaviour is well described by a simple and analytical model, which takes into account the particle-particle interactions through a crowding factor. The obtained results could be useful to optimize the design and manufacture of composites with metallic particles.