线性缠结与线性障碍的交替证明:一个等价结果

T. Fujita
{"title":"线性缠结与线性障碍的交替证明:一个等价结果","authors":"T. Fujita","doi":"10.9734/arjom/2023/v19i8687","DOIUrl":null,"url":null,"abstract":"Linear-width is a widely recognized and highly valued graph width parameter. The concepts of linear tangle and linear obstacle are dual concepts of linear-width. In this concise paper, we present an alternative proof of the equivalence between linear tangle and linear obstacle.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Alternative Proof of Linear Tangle and Linear Obstacle: An Equivalence Result\",\"authors\":\"T. Fujita\",\"doi\":\"10.9734/arjom/2023/v19i8687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear-width is a widely recognized and highly valued graph width parameter. The concepts of linear tangle and linear obstacle are dual concepts of linear-width. In this concise paper, we present an alternative proof of the equivalence between linear tangle and linear obstacle.\",\"PeriodicalId\":281529,\"journal\":{\"name\":\"Asian Research Journal of Mathematics\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asian Research Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/arjom/2023/v19i8687\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2023/v19i8687","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

线性宽度是一个被广泛认可和重视的图形宽度参数。线性缠结和线性障碍的概念是线宽的双重概念。在这篇简明的论文中,我们给出了线性缠结和线性障碍等价的另一种证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Alternative Proof of Linear Tangle and Linear Obstacle: An Equivalence Result
Linear-width is a widely recognized and highly valued graph width parameter. The concepts of linear tangle and linear obstacle are dual concepts of linear-width. In this concise paper, we present an alternative proof of the equivalence between linear tangle and linear obstacle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信