电子商务推荐与个性化推广

Qi Zhao, Yi Zhang, D. Friedman, Fangfang Tan
{"title":"电子商务推荐与个性化推广","authors":"Qi Zhao, Yi Zhang, D. Friedman, Fangfang Tan","doi":"10.1145/2792838.2800178","DOIUrl":null,"url":null,"abstract":"Most existing e-commerce recommender systems aim to recommend the right products to a consumer, assuming the properties of each product are fixed. However, some properties, including price discount, can be personalized to respond to each consumer's preference. This paper studies how to automatically set the price discount when recommending a product, in light of the fact that the price will often alter a consumer's purchase decision. The key to optimizing the discount is to predict consumer's willingness-to-pay (WTP), namely, the highest price a consumer is willing to pay for a product. Purchase data used by traditional e-commerce recommender systems provide points below or above the decision boundary. In this paper we collected training data to better predict the decision boundary. We implement a new e-commerce mechanism adapted from laboratory lottery and auction experiments that elicit a rational customer's exact WTP for a small subset of products, and use a machine learning algorithm to predict the customer's WTP for other products. The mechanism is implemented on our own e-commerce website that leverages Amazon's data and subjects recruited via Mechanical Turk. The experimental results suggest that this approach can help predict WTP, and boost consumer satisfaction as well as seller profit.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"E-commerce Recommendation with Personalized Promotion\",\"authors\":\"Qi Zhao, Yi Zhang, D. Friedman, Fangfang Tan\",\"doi\":\"10.1145/2792838.2800178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most existing e-commerce recommender systems aim to recommend the right products to a consumer, assuming the properties of each product are fixed. However, some properties, including price discount, can be personalized to respond to each consumer's preference. This paper studies how to automatically set the price discount when recommending a product, in light of the fact that the price will often alter a consumer's purchase decision. The key to optimizing the discount is to predict consumer's willingness-to-pay (WTP), namely, the highest price a consumer is willing to pay for a product. Purchase data used by traditional e-commerce recommender systems provide points below or above the decision boundary. In this paper we collected training data to better predict the decision boundary. We implement a new e-commerce mechanism adapted from laboratory lottery and auction experiments that elicit a rational customer's exact WTP for a small subset of products, and use a machine learning algorithm to predict the customer's WTP for other products. The mechanism is implemented on our own e-commerce website that leverages Amazon's data and subjects recruited via Mechanical Turk. The experimental results suggest that this approach can help predict WTP, and boost consumer satisfaction as well as seller profit.\",\"PeriodicalId\":325637,\"journal\":{\"name\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2792838.2800178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2800178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

大多数现有的电子商务推荐系统的目标是向消费者推荐正确的产品,假设每个产品的属性是固定的。然而,一些属性,包括价格折扣,可以个性化以响应每个消费者的偏好。考虑到价格往往会改变消费者的购买决策,本文研究了如何在推荐产品时自动设置价格折扣。优化折扣的关键是预测消费者的支付意愿(WTP),即消费者愿意为产品支付的最高价格。传统电子商务推荐系统使用的购买数据提供的积分低于或高于决策边界。在本文中,我们收集训练数据来更好地预测决策边界。我们实现了一种新的电子商务机制,该机制适应于实验室抽奖和拍卖实验,可以引出理性客户对一小部分产品的确切WTP,并使用机器学习算法来预测客户对其他产品的WTP。该机制在我们自己的电子商务网站上实现,该网站利用了亚马逊的数据和通过Mechanical Turk招募的主题。实验结果表明,该方法可以帮助预测WTP,提高消费者满意度和卖家利润。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E-commerce Recommendation with Personalized Promotion
Most existing e-commerce recommender systems aim to recommend the right products to a consumer, assuming the properties of each product are fixed. However, some properties, including price discount, can be personalized to respond to each consumer's preference. This paper studies how to automatically set the price discount when recommending a product, in light of the fact that the price will often alter a consumer's purchase decision. The key to optimizing the discount is to predict consumer's willingness-to-pay (WTP), namely, the highest price a consumer is willing to pay for a product. Purchase data used by traditional e-commerce recommender systems provide points below or above the decision boundary. In this paper we collected training data to better predict the decision boundary. We implement a new e-commerce mechanism adapted from laboratory lottery and auction experiments that elicit a rational customer's exact WTP for a small subset of products, and use a machine learning algorithm to predict the customer's WTP for other products. The mechanism is implemented on our own e-commerce website that leverages Amazon's data and subjects recruited via Mechanical Turk. The experimental results suggest that this approach can help predict WTP, and boost consumer satisfaction as well as seller profit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信